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Abstract

This paper introduces the space of (lexicographic) `-numbers and uses it to analyze extensive-

form games. `-Numbers are a simplified, two-dimensional version of the hyperreal numbers, with

straightforward operations that make it easy to work with infinitesimal probabilities. We use

`-numbers to provide simple characterizations of tremble-based equilibrium concepts, such as

sequential equilibria or sequential stable outcomes, without using sequences of strategy profiles.
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1 Introduction

Sequential rationality is a plausible requirement in extensive-form games. Broadly speaking, it re-

quires players to behave optimally at any instance of the game. For example, in a standard signaling

game, the sender should expect a rational receiver to best-respond to each message according to some

beliefs, whether on path or not. If the receiver assumes that the sender is playing a given strategy,

rationality uniquely pins down her assessment of the relative likelihood of each type of the sender

after each on-path message; hence her best responses are determined as well. If the message is off

path, rationality alone does not restrict the receiver’s assessment. Such indefiniteness often generates

a multiplicity of equilibria, some of them sustained through implausible threats.

An important class of equilibrium concepts addressing the indefiniteness of off-path beliefs is that

of tremble-based equilibria. These are typically expressed as limits of equilibria of versions of the

game where strategies are perturbed. For example, trembling-hand perfect equilibria (Selten, 1975)

are defined as limits of equilibria of close-by games where players tremble and hence Bayes’ rule can

be used after all histories. The advantage is that, in each equilibrium of a perturbation of the game,

beliefs are updated rationally and behavior is sequentially rational, giving plausibility and a sense of

robustness to the limit behavior. Other prominent examples of tremble-based equilibrium concepts are

proper equilibria (Myerson, 1978), sequential equilibria (Kreps and Wilson, 1982), strategically stable

sets of equilibria (Kohlberg and Mertens, 1986), and sequential stable outcomes (Dilmé, 2022b).

In practice, tremble-based equilibrium concepts are difficult to use. The reason is that proving

or disproving that a given candidate is indeed an equilibrium often requires manipulating sequences

of perturbations and limits of corresponding equilibrium strategies, which is often not feasible in

applications. Instead, weaker and less theoretically appealing selection criteria are often used, such

as different versions of perfect Bayesian equilibrium, iterated deletion of weakly dominated strategies,

or criteria specific to signaling games (such as the Intuitive Criterion, D1, divinity, etc.).

In this paper, we develop a new tool aimed at making tremble-based equilibrium concepts easier

to use. We construct the space of `-numbers in order to represent and easily work with asymptotic

likelihoods without using sequences. We use `-numbers to provide a simple characterization of belief

consistency and sequential equilibria. We then study the natural extension of previous stability con-

cepts using `-numbers: We introduce `-stable outcomes and prove they always exist and have desirable

properties. We show that `-stable outcomes are typically easier to find than outcomes satisfying other

stability concepts, and that finding `-stable outcomes permits finding sequential stable and stable

outcomes in some cases.
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Figure 1

We begin by defining the space of (lexicographic) `-numbers, also referred to as likelihoods, as the

set of products of strictly positive real numbers and non-negative powers of an infinitesimal ε; that is,

an `-number is x ε y with x ∈R++ and y ∈R+. We identify ε0 with 1, so `-numbers are an extension

of the positive real numbers. An `-number x ε y with y>0 is referred to as an infinitesimal, and it

is used to categorize the likelihood of events with vanishing probability. Importantly, when adding

`-numbers we keep only the largest terms; for example, 1+4ε=1 and 5ε2.1+2ε2.1=7ε2.1.1 The

standard part of an `-number is its closest real number; for example, st(3ε2) = 0 and st(0.7ε0)=0.7.

We use the language of `-numbers to generalize the concept of a strategy profile. An `-strategy

profile assigns a likelihood to each action, with the condition that the sum of the likelihoods of the

actions available at each information set is 1. Assigning likelihoods to both histories and information

sets is then straightforward and done through the usual multiplication and addition of likelihoods of

the actions and histories they are composed of. For example, consider the game tree in Figure 1 and

the corresponding `-strategy profile (note that the sum of likelihoods of the actions at each node is

1). The likelihood of the middle history of player 3’s information set is computed multiplying the like-

lihoods of the actions it contains, that is, 4ε · 2ε2.3=8ε3.3. The likelihood of player 3’s information

set is computed by adding the likelihoods of its histories, that is, 3ε+8ε3.3+ε=4ε. The conditional

likelihood of the middle history is then 8ε3.3/(4ε)=2ε2.3. Note that the `-strategy profile generates

a unique assessment (i.e., strategy profile and belief system), where each action is played with prob-

ability equal to the standard part of the assigned likelihood, and each history is assigned the standard

part of its conditional likelihood. For example, under the assessment corresponding to Figure 1, player

1 plays her upper and lower actions with probability 1 and 0, respectively, and player 3’s beliefs over

the upper, middle, and lower histories are 0.75, 0, and 0.25, respectively.

1Because of this simplification, our construction can be interpreted as a significantly simplified version of hyperreal numbers

(see Keisler, 2013, Henle and Kleinberg, 2014, and Robinson, 2016).
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Our first result establishes that, despite their simplicity, `-numbers permit a simple, full character-

ization of consistency (recall Kreps and Wilson, 1982, define consistent assessments as the limits of

assessments of full-support strategy profiles). We show that an assessment is consistent if and only if

some `-strategy profile generates it. This result eases showing that a given assessment is consistent

(it only requires providing `-strategy profile generating it) or ruling out its consistency (see Example

3.4 below). Furthermore, it allows us to characterize sequential equilibria. We define an `-equili-

brium as an `-strategy profile where the likelihood of an action is not infinitesimal only if the action

is sequentially optimal given the implied belief system. We show that each `-equilibrium generates a

sequential equilibrium and that each sequential equilibrium is generated by some `-equilibrium. This

characterization makes it easier to work with sequential equilibria, as it permits one to work directly

“in the limit” to determine both sequential optimality and belief consistency.

With the goal of studying stability in mind, we proceed by generalizing the concept of a tremble

sequence in Section 4. An `-tremble assigns an infinitesimal to each action and is interpreted as a

very small likelihood with which players make mistakes. Paralleling trembling-hand perfection, an

`-equilibrium for a given `-tremble is defined as an `-strategy profile that assigns a higher likelihood

than the `-tremble only to sequentially optimal actions. We provide a characterization of `-equilibria

for a given `-tremble as those which generate assessments that are limits of perfect εn-equilibria of

versions of the game perturbed according to the `-tremble, for some sequence εn→0.

We then define stability using `-numbers by requiring stability with respect to `-trembles: We

say that an outcome is `-stable if, for any `-tremble, there is some `-equilibrium for the `-tremble

with the given outcome. We show that sequential stable outcomes (Dilmé, 2022b) are `-stable, and

hence all games have an `-stable outcome. Like sequential stable outcomes, `-stable outcomes satisfy

the never a weak best response (NWBR, which implies versions forward induction and iterated strict

dominance), invariance to reordering simultaneous moves, and on-path subgame perfection. They

also pass standard selection criteria in signaling games (e.g., Intuitive Criterion, D1, and D2).

We finally provide procedures for obtaining `-stable outcomes in practice. The first consists in

ruling out the `-stability of a given outcome ω by (i) proving that it fails some necessary condition

(e.g., NWBR, sequential rationality, or D1), or (ii) showing that there is no `-equilibrium for a given `-

tremble with outcomeω, or (iii) a combination of the two. If all but one outcome are shown to not be

`-stable, then existence implies that the remaining outcome is `-stable. The second procedure consists

in explicitly showing that any `-tremble has an `-equilibrium with a given outcome. Both procedures

are greatly simplified when using `-numbers instead of sequences of trembles and corresponding
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sequences of strategy profiles. We show that `-strategy profiles can be generalized to allow for 0-

likelihood actions, which simplifies further working with `-numbers. We illustrate these procedures

through some examples.

1.1 Related literature

Our paper contributes to the literature aiming to simplify the use of tremble-based equilibrium con-

cepts. In our view, there are three main approaches, which we now describe.

The first approach consists in analyzing weaker equilibrium concepts that are easier to use. For

example, Kreps and Wilson (1982) introduced sequential equilibria as a weaker but easier-to-use

concept than the perfect equilibria of Selten (1975): The former required beliefs to be consistent with

a sequence of strategy profiles, but sequential optimality was required only “in the limit” instead of

along the sequence. (As Kreps and Wilson state, “It is vastly easier to verify that a given equilibrium is

sequential than that it is perfect.”) Perfect Bayesian equilibrium (Fudenberg and Tirole, 1991) was a

further weakening, with a weaker notion of belief consistency that did not require using sequences of

strategy profiles. Similarly, Dilmé (2022b) weakened the concept of stable outcomes in Kohlberg and

Mertens (1986) to the easier-to-use concept of sequential stable outcome by requiring ε-optimality

along the sequence instead of exact optimality.

The second approach consists in using selection criteria, which are “tests” that permit one to

eliminate undesirable equilibria. This approach has been popular in signaling games, where selection

criteria (such as the Intuitive Criterion, D1, and D2 of Cho and Kreps, 1987, and the divinity criterion

of Banks and Sobel, 1987) were introduced to simplify obtaining stable outcomes. Similarly, equilibria

are sometimes ruled out because they fail to satisfy certain properties of tremble-based equilibria (such

as forward induction or “no signaling what you do not know”).

The last approach consists in generalizing the definition of strategy profiles or belief systems to

richer mathematical objects. Myerson (1986) generalizes belief systems to conditional probability

systems (CPSs) to specify conditional probabilities (or beliefs) on zero-probability events. He shows

that CPSs are limits of sequences of probability distributions and uses them to characterize sequential

communication equilibria and predominant communication equilibria (see also Battigalli, 1996, and

Kohlberg and Reny, 1997). Blume, Brandenburger, and Dekel (1991) instead generalize strategy pro-

files to lexicographic probability systems (LPSs), provide a decision-theoretic representation of pref-

erences under lexicographic beliefs, and use it to characterize (normal-form) perfect and proper equi-

libria (see also Govindan and Klumpp, 2003). Similarly, Mailath, Samuelson, and Swinkels (1997)
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use LPSs to characterize strategic independence-respecting equilibria (SIRE) and compare them to

proper equilibria.

This paper adopts the third approach. We deliberately construct the simplest generalization of

strategy profiles that permits the characterization of tremble-based equilibrium concepts without us-

ing sequences. Our likelihoods are two-dimensional, assigned separately to each action, and can

be manipulated using simple operations. While the construction permits us to characterize weaker

concepts than LPSs—sequential instead of perfect/proper equilibria—it is also significantly easier to

use, which makes it useful for characterizing (sequential) stability. Appendix B contains a detailed

exposition of the relationship between `-strategy profiles, LPSs, and CPSs.

The rest of the paper is organized as follows. Section 2 introduces the space of `-numbers. Section

3 defines `-strategy profiles and `-equilibria. It also characterizes consistent assessments using `-stra-

tegy profiles and sequential equilibria using `-equilibria. Section 4 defines `-stable outcomes, proves

their existence, and describes some of their properties. It also provides some results and techniques to

find `-stable outcomes, relates them to common selection criteria in signaling games, and illustrates

how to use them through examples. Finally, Section 5 concludes. The appendix contains the proofs

of the results and discusses the relationship between `-strategy profiles, LPSs, and CPSs.

2 `-Numbers

In this section, we introduce the space of lexicographic (`-)numbers, or likelihoods, which will be

the basis of our analysis. We will do so by using a simplified version of the usual calculus with

infinitesimals (see Keisler, 2013, Henle and Kleinberg, 2014, and Robinson, 2016).

From now on, the symbol ε will signify an “infinitesimal,” which informally can be thought of

as a number bigger than 0 but smaller than any positive real number. An `-number ` is the product

of a positive real number x ∈R++ and ε to the power of a non-negative real number y ∈R+, that is,

`≡ x ε y . The space of `-numbers is L. We will use `-numbers to represent asymptotic likelihoods with

which actions are played along some sequence of strategy profiles. We now define simple operations

for `-numbers.
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Definition 2.1. We endow the space of `-numbers with the following order and operations for each

pair `≡ x ε y , ˆ̀ ≡ x̂ ε ŷ ∈ L:

1. Order: `> ˆ̀ if either y< ŷ or y= ŷ and x> x̂ .

2. Addition: `+ ˆ̀ ≡ (Iy≤ ŷ x + Iy≥ ŷ x̂)εmin{y, ŷ}.

3. Multiplication: ` ˆ̀ ≡ (x x̂)ε y+ŷ .

4. Division: `/ˆ̀ ≡ (x/ x̂)ε y−ŷ whenever y≥ ŷ .

5. Standard part: st(`) ≡ Iy=0 x ∈ R+.

We identify each `-number x ε0∈ L with the real number x ∈R++ (i.e., ε0≡1), so the previous

operations are consistent with the usual addition, multiplication, and division of real numbers. `-

Numbers are therefore an extension of the positive numbers, R++⊂ L. Also, we call an `-number

`∈ L with st(`)=0 (i.e., with y>0) an infinitesimal. We adopt the natural convention that ε1≡ε.

To gain intuition about the operations between `-numbers, fix two `-numbers `, ˆ̀ ∈ L. The lexico-

graphic order uses that, when comparing two `-numbers, the one with the smallest power to ε is the

largest one—as it would happen if ε were a very small but strictly positive real number. The multiply-

ing factors are compared if the two powers are the same. Importantly, the sum of ` and ˆ̀ only preserves

the most likely terms. For example, if y< ŷ then `+ ˆ̀= x ε y , and if y= ŷ then `+ ˆ̀=(x+ x̂)ε y . This

assumption (which differs from the standard use of hyperreal numbers, see below) permits keeping

the space `-numbers simple while still allowing to compare the likelihood of low probability events.

Multiplication and division of `-numbers are also simple and intuitive, while the standard part simply

provides the closest real number. As it will become apparent, it is convenient (and unnecessary) for

our analysis not to include 0 in the set of `-numbers. Still, as we argue in Section 4.4, including 0

has some tractability advantages in some games; in there, we present an extension of the space of

`-numbers that contains the number 0.

Representation as classes of power sequences

It will be sometimes convenient to think of an `-number `= x ε y as indexing the (equivalence) class of

sequences that tend to 0 as (x (1/n)y)n. That is, a given real sequence (σn(a))n, where σn(a)∈R++
for all n∈N, belongs to the class indexed by `, denoted (σn(a))n ∈ `, if and only if

lim
n→∞

σn(a)
x (1/n)y

= 1 . (2.1)
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This representation is helpful to get further intuition for the operations defined in Definition 2.1.

Take two `-numbers `, ˆ̀∈ L, and let (σn(a))n∈` and (σ̂n(a))n∈ ˆ̀ be two sequences. Then, we have

`> ˆ̀ ⇔ lim
n→∞

σn(a)
σ̂n(a)

> 1 .

That is, `> ˆ̀ if any sequence represented by ` is asymptotically bigger than any sequence represented

by ˆ̀. Similarly, the operations defined above correspond to operations between sequences they rep-

resent; for each of the operations ?∈{+, ·,/}, we have

(σn(a)?σ̂n(a))n ∈ `? ˆ̀ .

Intuitively, our definition of sum only preserves the most likely terms of (σn(a)+σ̂n(a))n: if y< ŷ

then (σn(a))n tends to 0 at a slower rate than (σ̂n(a))n, so (σn(a)+σ̂n(a))n tends to 0 at the same

rate as (σn(a))n, hence `+ ˆ̀=`. The standard part of an `-number ` is the limit of the sequences it

contains, st(`) = limn→∞σn(a): st(`)=0 if y>0 and st(`)= x if y=0.2

Relationship to hyperreal numbers

There is abundant work in mathematics on hyperreal numbers and their use to study calculus using in-

finitesimals. The set of hyperreal numbers is an extension of the real numbers, constructed through the

addition of “infinitesimals” and “infinites” and the requirement of closeness through basic operations

and limits (see Keisler, 2013, for a formal definition).

Working with hyperreal numbers is convenient to simplify some limit arguments in calculus, such

as approximations of functions around a given point. Hyperreal numbers are nevertheless difficult to

use in practice because of their infinite dimensionality, as multiple infinitesimals are kept through the

operations and limits. For example, the sum and multiplication of the hyperreal numbers 1+ε and

e−1/ε−1/ log(ε) are

1+ε+e−1/ε−1/ log(ε) and e−1/ε−1/ log(ε)+ε e−1/ε−ε/ log(ε) ,

respectively. Then, through the sum and multiplication (and other operations), the representation of

hyperreal numbers gets typically long and unusable in many settings.

Our construction of `-numbers is tailored to be used to model probabilities in the study of game

theory and greatly simplifies hyperreal numbers. The first simplification is that we only consider

2Note that the representation can be generalized by replacing x (1/n)y by x f (n)y in expression (2.1), where f : N→ R++
is any function such that limn→∞ f (n) = 0. We take f (n)=1/n for concreteness and simplicity.
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infinitesimals that are (positive) powers of some fixed infinitesimal ε. Second, we disregard small

infinitesimals when we use addition, hence keeping the expressions simple. As we shall now see,

despite its simplicity, our construction will be powerful in characterizing sequential equilibria and

stable outcomes.

3 `-Strategy profiles and belief consistency

In this section, we use `-numbers to characterize belief consistency and sequential optimality in

extensive-form games. We first establish the notation for extensive-form games. We then introduce

`-strategy profiles and prove that the set of assessments they generate coincides with the set of con-

sistent assessments. We finally introduce the concept of `-equilibrium and show that it is equivalent

to the concept of sequential equilibrium.

3.1 Extensive-form games

We now provide the definitions and corresponding notation for an extensive-form game.

A (finite) extensive-form game G= 〈A, H,I, N ,π, u〉 has the following components. A finite set

of actions A. A finite set of histories H containing finite sequences of actions, satisfying that for all

(a j)Jj=1∈H with J >0 we have (a j)J−1
j=1 ∈ H; the set of terminal histories is denoted T . An informa-

tion partition I of the non-terminal histories and a partition {AI |I ∈I} of A such that, for each I ∈I

and h∈H, we have (i) (h, a)∈H for some a∈AI if and only if h∈ I , and (ii) if h∈ I and h′>h then

h′ /∈ I .3 A finite set of players N 630. A player assignment ι :I→N ∪{0} assigning each information

set to a player or to nature. A strategy by nature π :∪I∈ι−1({0})A
I→ (0, 1] satisfying

∑

a∈AI π(a)=1 for

each I ∈ ι−1({0}). For each player i∈N , a (von Neumann–Morgenstern) payoff function ui : T→R. For

convenience, we set u0(t)=0 for all t ∈ T .

A strategy profile is a mapσ : A→ [0,1] such that
∑

a∈AI σ(a)=1 for all I ∈I (i.e., it is a probability

distribution for each set of actions available at each information set) and σ(a)=π(a) for all a played

by nature (i.e., nature plays according to π). We let Σ be the set of strategy profiles.

3Note that we assume, without loss of generality, that each action only belongs to a unique information set (otherwise one

can rename actions). We use h′>h to indicate that h′ succedes h.
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3.2 `-Strategy profiles

We begin by defining `-strategy profiles. Here, and in the rest of the paper, an extensive form game

G is fixed.

Definition 3.1. An `-strategy profile is a mapλ : A→ L satisfying that, for each I ∈I, (i)
∑

a∈AI λ(a)=1,

and (ii) λ(a)=π(a) for all a∈AI whenever ι(I)=0.

The set of `-strategy profiles is denoted Λ. An `-strategy profile satisfies the same conditions

as a strategy profile. The first condition requires that the total likelihood of the actions of a given

information set is 1. The second condition is that actions by nature receive the same likelihood as the

one specified by the game. Without risk of confusion, we will often use x(a)ε y(a) to denote λ(a).

We can easily define the likelihood of a history or an information set induced by an `-strategy

profile λ∈Λ as follows. For each history h≡ (a j)Jj=1∈H and information set I ∈I, we define (with

some abuse of notation)

λ(h) ≡
∏J

j=1λ(a j) and λ(I) ≡
∑

h′∈I λ(h
′) .

The likelihood of a history is calculated in the same way as its probability, multiplying the likelihoods of

the actions that compose it. Similarly, the likelihood of an information set is the sum of the likelihoods

of the histories it contains.4

We do not interpret an `-strategy profile λ as a profile of choices of sequences of strategy pro-

files by the players. Instead, in the spirit of Kohlberg and Reny (1997)’s interpretation of relative

probability spaces, each `-number λ(a) can be seen as a simple tool used by an outside observer to

assess the relative likelihoods of actions, histories, and information sets. The outside observer can

then “consistently” use the `-strategy profile to assess the relative likelihood of histories. As we shall

now see, all and only assessments generated from `-strategy profiles will satisfy Kreps and Wilson

(1982)’s consistency condition.

Remark 3.1. Our definitions of `-numbers and `-strategy profiles do not allow actions to be played

with likelihood (exactly) 0. In Section 4.1 we justify this restriction by introducing `-trembles, which

set a lower bound on the likelihood each action can be played. There are, nevertheless, other pos-

sible definitions of `-numbers and `-strategy profiles which allow the likelihood of an action to be

4Note that the likelihood of an information set is not affected by the likelihoods of histories which are infinitely less likely

than other histories of the information set. If, for example, I= {h, h′} and y(h)< y(h′) (so h is infinitely more likely than

h′), then λ(I)=λ(h)+λ(h′)=λ(h).
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exactly 0 while preserving all our results. In Section 4.4, we show that all our results hold under the

less restrictive definition of (fully-mixed) `-strategy profile (see Definition 4.5), which allows λ(a)=0

for some actions a∈A while ensuring that information sets are reached with non-zero (but maybe

infinitesimal) likelihood. We argue that such relaxation simplifies some arguments.

Example 3.1. Figure 2 depicts the beer-quiche game (where nature plays according to π(s)=1−

π(w)=0.9) and an `-strategy profile λ (in red). Using Ib to denote player 2’s left information set, we

have

λ(Ib) = λ(s, bs)+λ(w, bw) = 2.7ε3.1+0.1ε = 0.1ε .

3.3 Assessments and consistency

We continue by relating `-strategy profiles to the standard concept of assessment (Kreps and Wil-

son, 1982). Recall that an assessment is a pair (σ,µ), where σ∈Σ is a strategy profile, and where

µ : H\T→ [0,1] is a belief system satisfying that
∑

h∈I µ(h)=1 for all I ∈I. We can associate an as-

sessment to an `-strategy profile by taking the standard part of the likelihoods of each action and the

relative likelihoods of histories as follows:

Definition 3.2. The assessment generated by λ∈Λ is (σλ,µλ) defined byσλ(a)≡ st(λ(a)) for all a∈A,

and µλ(h)≡ st(λ(h)/λ(I)) for all I ∈I and h∈ I .

Kreps and Wilson (1982) point out that not all assessments are plausible. Interpreting µ(h) as

the belief that player ι(I) holds about history h∈ I at information set I , it is natural to require Bayes

consistency if I is on path, and also to require that beliefs are updated consistently off path. Kreps and

Wilson say that an assessment (σ,µ) is consistent if there is a fully-mixed sequence (σn)n supporting

(σ,µ); that is, σn→σ and σn(h)/σn(I)→µ(h) for all I ∈I and h∈ I .
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The following result establishes that consistent assessments coincide with assessments generated

by `-strategy profiles. Hence, it provides an easy way to generate consistent assessments without the

need to compute limits of strategy profiles.

Proposition 3.1. An assessment is consistent if and only if it is generated by some `-strategy profile.

The “if” part of Proposition 3.1 is obtained as follows. Fix some `-strategy profile λ∈Λ and define

(σλn)n using power sequences of strategy profiles as follows: for each n∈N and a∈A,

σλn(a) ≡







x(a) (1/n)y(a) if y(a)>0,

Mλ
n (I

a) x(a) if y(a)=0,
(3.1)

where Mλ
n (I

a) is a factor that ensures that
∑

a′∈AIa σλn(a
′)=1, where Ia ∈I is the unique informa-

tion set where a is available (i.e., satisfying a∈AIa
), and where the subindex n is initialized so that

Mn(λ, Ia)≥0 for all n and a (note that limn→∞Mλ
n (I

a)=1). It is easy to see that (σλn)n supports

(σλ,µλ), hence (σλ,µλ) is consistent for all λ∈Λ.

The “only if” part is less obvious, as a consistent assessment can be generated by strategy profiles

that do not necessarily look like those in equation (3.1). The result follows from Theorem 3.1 in Dilmé

(2022a), which shows that any consistent assessment is supported by a power sequence of strategy

profiles like (3.1). That is, even though power sequences of strategy profiles are small compared to

the set of all sequences, they are rich enough to support all consistent assessments. `-Strategy pro-

files constitute then a simple tool to characterize consistency: they are defined action-by-action and

generate all and only consistent assessments. Examples 3.4 and 3.5 illustrate how `-strategy profiles

can also be used to rule out the consistency of some assessments.

Example 3.2 (Continuation of Example 3.1). Letting λ be the `-strategy profile in Figure 2, we have

that σλ(s)=1−σλ(w)=0.9, σλ(qs)=σ
λ(qw)=σ

λ(nq)=σλ(fb)=1, and σλ(a)=0 for all other ac-

tions. Also, the implied belief system is depicted in the figure (numbers in brackets). For example,

µλ(s, bs) = st(λ(s, bs)/λ(Ib)) = st(2.7ε3.1/(0.1ε)) = st(27ε2.1) = 0 .

Remark 3.2. In our construction, the player acting at a given information set can be thought of as

only entertaining histories with a non-infinitesimal conditional likelihood. Indeed, even when an

information set I is off path (i.e., y(I)>0), we have that
∑

h∈I λ(h)/λ(I)=1, and also µλ(h)=0 if

and only if y(h)> y(I).
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3.4 `-Equilibria and sequential equilibria

Payoffs and `-equilibria

We first derive the payoff a player receives from playing a given action at an information set. Fix an

`-strategy profile λ. For each a∈A, we let

u(a|λ) ≡
∑

t∈T a

st
�

λ(t)
λ(a)λ(Ia)

�

uι(Ia)(t) (3.2)

be player ι(Ia)’s payoff conditional on Ia being reached and a being played, where T a⊂ T is the set of

terminal histories that contain a as one of its elements (we omit the subindex ι(Ia) to ease notation).

It is easy to see that u(a|λ) coincides with the continuation payoff player ι(Ia) obtains from playing

a under the assessment (σλ,µλ), which we denote u(a|σλ,µλ).5

We can now define the concept of `-equilibrium:

Definition 3.3. λ is an `-equilibrium if st(λ(a))>0 implies u(a|λ)≥u(a′|λ) for all a∈A and a′∈ Ia.

We denote the set of `-equilibria as Λ∗. An `-equilibrium is an `-strategy profile where only se-

quentially optimal actions are played with positive probability. Because `-strategy profiles generate

assessments, the sequential optimality requirement can be applied to all information sets.6

Relationship to sequential equilibria

We now relate the concept of `-equilibrium to the well-known concept of sequential equilibrium by

Kreps and Wilson (1982). They say an assessment (σ,µ) to be a sequential equilibrium if it is consistent

(as defined above) and sequentially rational (so σ(a)>0 only if u(a|σ,µ)≥u(a′|σ,µ) for all a′∈ Ia).

The following result illustrates the close connection between sequential equilibria and `-equilibria.

Proposition 3.2. (σ,µ) is a sequential equilibrium if and only if some `-equilibrium generates it. Hence,

an `-equilibrium exists.

Proposition 3.2 exemplifies the usefulness of our approach. Indeed, proving that a given assess-

ment is a sequential equilibrium is not easy in many applications. The difficulty typically resides in

5Recall that, for a given assessment (σ,µ) and each action a∈A, the continuation outcome is uniquely determined, and so

is then the continuation payoff of the player playing a.

6To some degree, our definition is analogous to Myerson (1978)’s characterization of trembling perfect equilibrium as the

limit of εn-perfect equilibria as εn→0, where σn is an εn-perfect equilibrium if it is fully mixed and satisfies that σn(a)>εn

only if a is optimal.
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finding a sequence of fully-mixed assessments that converges to (σ,µ). Such difficulties have favored

the use of equilibrium concepts that are not as powerful in selecting Nash equilibria, such as perfect

Bayesian equilibria (PBE, Fudenberg and Tirole, 1991). `-Equilibria provide a simple characterization

of sequential equilibria: Any `-strategy profile satisfying sequential rationality generates a sequential

equilibrium.7

The first statement of Proposition 3.2 follows from Proposition 3.1, which guarantees the con-

sistency of generated assessments, and the fact that u(a|λ)=u(a|µλ,σλ), which makes the second

condition in Definition 3.3 equivalent to sequential rationality. The proof of existence is then trivial:

a sequential equilibrium exists (by Kreps and Wilson, 1982) and it is generated by some `-strategy

profile (by Proposition 3.1); hence such an `-strategy profile is an `-equilibrium.

Example 3.3 (Continuation of Example 3.2). It is easy to see that the `-strategy profile depicted in

Figure 2 is an `-equilibrium, hence it generates a sequential equilibrium.

3.5 Using `-strategy profiles

Powers vs. multiplying factors

The belief system µλ generated by an `-strategy profile λ∈Λ provides the relative likelihoods of

histories h, h′∈H in the same information set I , denoted λ(h)≡ x(h)ε y(h) and λ(h′)≡ x(h′)ε y(h′),

where note that x(h) and y(h) can be computed independently; for h=(a j)Jj=1 we have

x(h) =
∏J

j=1 x(a j) and y(h) =
∑J

j=1 y(a j) .

Computing such relative likelihood from λ can be done in two steps. The first step compares the

powers of ε, that is, y(h) and y(h′). If y(h)> y(h′) then µλ(h)=0, and if y(h)< y(h′) then µλ(h′)=0.

The second step applies only when y(h)= y(h′), in which case the relative likelihood is determined

by the ratio the multiplying factors, x(h)/x(h′).

The previous observations simplify proving or disproving that a given assessment is consistent and

hence has the potential of being part of a sequential equilibrium, as illustrated in Examples 3.4, 3.5,

and 4.4.8 For instance, it is easy to see that an assessment (µ,σ) such that µ(h)∈{0, 1} for all h∈H\T

can be generated by an `-strategy profile with x(a)=1 for all a∈A.

7Our characterization eases proving in applications the claim (often stated in footnotes without proof) that a given PBE

(σ,µ) is also a sequential equilibrium, as it only requires reporting appropiate `-numbers for the actions a with σ(a)=0

that generate belief system µ.

8Dilmé (2022a) makes a similar observation when computing assessments derived from power sequences of strategy profiles.
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Example 3.4. Consider Figure 3, which corresponds to Figure 2 in Battigalli (1996) and to Figure 7

in Kohlberg and Reny (1997), with slight notation changes (see the discussion of conditional proba-

bility systems in Appendix B). Battigalli goes through some lengthy arguments to show that there is

no sequence of strategy profiles (σn)n such that limn→∞σn(t i)/σn(t i′)=0 for all i> i′. Showing this

is easy using Theorem 3.1: If (σn)n with the previous property existed, then there would be some

mapping y : A→R+ such that y(t i)> y(t i′) for all i> i′. Then, we would have y(M)= y(l)=0 (be-

cause y(t1)=0). Also, since y(t2)< y(t3) and y(t4)< y(t5), we have y(R)< y(m) and y(r)< y(L).

Finally, since y(t7)< y(t8), we have that y(L)+ y(m)< y(R)+ y(r), which is a contradiction.

Example 3.5. Consider again Figure 3. We prove that there is no consistent assessment where µ(L, l)=

µ(M , m)=µ(R, r)=2/3 (Kohlberg and Reny, 1997, prove this using limits of sequences). If this was

the case, then there would be some map x : A→ R++ satisfying

x(L) x(l) = 2 x(M) x(l), x(M) x(m) = 2 x(R) x(l), and

x(R) x(l) = 2 x(L) x(m).

The multiplication of all left-hand sides divided by the multiplication of all right-hand sides equals

1/8, which is an obvious contradiction.

Transformations

Different `-strategy profiles can be equivalent in that they generate the same assessment. For ex-

ample, if λ∈Λ is such that there a single action a with st(λ(a))=0, then all `-strategy profiles that
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coincide with λ except for the infinitesimal they assign to a generate the same assessment. Since

some `-strategy profiles may be easier to use than others equivalent to them, we now provide a sim-

ple transformation that preserves the assessment generated by a `-strategy profile.

A straightforward way to transform an `-strategy profile into an equivalent `-strategy profile is by

replacing the infinitesimal ε by k1 ε
k2 . Using this, it is easy to see that λ is equivalent to any `-strategy

profile obtained by choosing some k1, k2∈R++ and applying

x(a) 7→ k y(a)
1 x(a) and y(a) 7→ k2 y(a)

for all a, is equivalent to λ. An implication is that if a consistent assessment (µ,σ) satisfies σ(a)=0

for some a∈A, then (µ,σ) is generated by an `-strategy profile with λ(a)=ε.

4 `-Stable outcomes

Our next goal is to study stability using `-numbers. We first introduce the concepts of `-tremble and

`-equilibrium for an `-tremble in this section. We will then define `-stable outcomes and characterize

their main properties. We alsoprovide some procedures and tools that simplify obtaining `-stable

outcomes. We then show that `-strategy profiles can be extended to allow actions to have a likelihood

equal to 0, which eases some arguments. We also present a renormalization of `-strategy profiles that

preserves their properties. Section 4.5 illustrates the use of `-stability through an example.

4.1 `-Trembles and `-stable outcomes

`-Equilibria for a given `-tremble

Selten (1975) introduced the possibility that players may make mistakes. The idea was that, in a game

where players tremble so that any action may be chosen by mistake, all information sets are on path;

hence players can use Bayes rule to compute their beliefs. We now use the language of `-numbers to

model small probabilities of mistakes.

Definition 4.1. An `-tremble is a map λ̃ : A→ L such that st(λ̃(a))=0 for all a∈A.

The set of `-trembles is Λ̃. We interpret an `-tremble as an infinitesimal likelihood with which

players make mistakes (see below a characterization in terms of sequences of trembles). Note that

each action is assigned an infinitesimal, and hence the standard part of an `-tremble is not a probability
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distribution when restricted to the actions available at a given information set. We will often use

x̃(a)ε ỹ(a) to denote λ̃(a), where note that ỹ(a)>0 for all a∈A.

Selten defined (trembling-hand) perfect equilibria as limits of equilibria of perturbed games. A

strategy profile σ is a perfect equilibrium if there is a sequence of trembles (ηn)n → 0 and a corre-

sponding sequence of strategy profiles (σn)n such that σn(a)>ηn(a) only if a is sequentially optimal.

The idea is that, in each perturbed game, each player plays an action with a probability no lower than

the trembling probability and plays an action with a higher probability only if the action is optimal.

We now impose the exact same requirements in our definition of `-equilibrium for a given `-tremble.

Definition 4.2. λ∈Λ is an `-equilibrium for λ̃∈ Λ̃ if, for all a∈A, λ(a)≥ λ̃(a), and

λ(a)>λ̃(a) ⇒ u(a|λ) ≥ u(a′|λ) for all a′∈AIa
. (4.1)

We denote the set of `-equilibria for a given λ̃ as Λ∗(λ̃). As mentioned above, λ∈Λ∗(λ̃) satisfies

two requirements. The first is that λ(a)≥ λ̃(a) for all a, which hints at the interpretation of the `-trem-

ble as an asymptotic probability of making mistakes: Conditional on a given information set being

reached, the likelihood that the corresponding player can assign to an action a can not be lower than

λ̃(a). The second requirement is that λ(a)>λ̃(a) only if a is sequentially optimal. Like for perfect

equilibria, a player plays an action with a higher likelihood only if the action is optimal.

Note that the definition of `-equilibrium (Definition 3.3) only requires sequential optimality for ac-

tions played with non-infinitesimal likelihood and does not impose any restriction on the infinitesimal

assigned to the other actions. As we saw, this definition makes `-equilibria equivalent to sequential

equilibria. The definition `-equilibria for a given `-tremble (Definition 4.2) requires sequential opti-

mality for all actions played with a likelihood strictly higher than that under the `-tremble, even when

their likelihood is infinitesimal. The following result establishes that, while the set of `-equilibria for

a particular `-tremble is smaller than the set of `-equilibria, any `-equilibrium is an `-equilibrium for

some `-tremble.

Proposition 4.1. For each λ̃∈ Λ̃, an `-equilibrium for λ̃ exists. Furthermore, an `-strategy profile is an

`-equilibrium if and only if it is an `-equilibrium for some `-tremble; that is, Λ∗=∪λ̃∈Λ̃Λ
∗(λ̃).

Proposition 4.1 establishes that the class of `-equilibria that are consistent with optimization given

some `-tremble coincides with the class of all `-equilibria. The “if” part of Proposition 4.1 follows

from the observation that each `-equilibrium λ is an `-equilibrium for the `-tremble λ̃ defined as

λ̃(a)≡λ(a) if st(λ(a))=0 and λ̃(a)≡ε otherwise. The “only if” part is implied by the fact that, if λ
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is an `-equilibrium for some λ̃, then st(λ(a))>0 only if a is sequentially optimal, hence λ is also an

`-equilibrium.

Characterization in terms of sequences

In this section, we characterize `-equilibria for a given `-tremble in terms of sequences of strategy

profiles. Doing so is illustrative of the interpretation of objects defined with the use of `-numbers as

limits of standard objects. It will also help us clarify the relationship between `-stability and other

stability concepts.

Definition 4.3. Fix some `-tremble λ̃∈ Λ̃, with λ̃(a)= x̃(a)ε ỹ(a) for all a∈A. The tremble sequence

associated with λ̃, denoted (ηλ̃n)n, is defined as ηλ̃n(a)≡ x̃(a) (1/n) ỹ(a) for all a∈A.

We will use G(ηλ̃n) to denote the perturbed game where each action a has to be played with

probability at least ηλ̃n(a). Note that our notation is consistent with the definition of σλn(a) in (3.1),

now ỹ(a)>0 for all a∈A. In particular, note that σλn(a)≥η
λ̃
n(a) if and only if λ(a)≥ λ̃(a).

We now fix some λ∈Λ and λ̃∈ Λ̃ with λ ≥ λ̃. We define the (degree of) sequential optimiality of

σλn with respect to ηλ̃n , denoted SOn(λ|λ̃) or SO(σλn |η
λ̃
n), as the maximum payoff loss generated by an

action played with a probability above the trembling probability, that is,

SOn(λ|λ̃) ≡ max
a|σλn (a)>ηλ̃n(a)

max
a′∈AIa

�

u(a′|σλn) − u(a|σλn)
�

, (4.2)

where u(a′|σλn) is player ι(Ia) payoff from playing a under σλn conditional on Ia being reached (it

is uniquely defined since σλn has full support). Note that SOn(λ|λ̃)≥0, and that lower values of

SOn(λ|λ̃) indicate that σλn is “more” sequentially rational given ηλn . For example, SOn(λ|λ̃)=0 if

and only if σλn is a Nash equilibrium of G(ηλ̃n). Similarly, defining εn≡SOn(λ|λ̃), we have that σλn

is a perfect εn-equilibrium of G(ηλ̃n) (see Dilmé, 2022b). We can now provide a characterization of

`-equilibrium for a given `-tremble in terms of the corresponding sequences.

Proposition 4.2. λ is an `-equilibrium for λ̃ if and only if λ≥ λ̃ and SOn(λ|λ̃)→0 as n→∞.

Proposition 4.2 establishes that λ is an `-equilibrium for λ̃ only ifσλn is asymptotically sequentially

optimal given ηλ̃n . Hence, assessments generated by `-equilibria for λ̃ are those which are supported

by sequences of strategy profiles of the perturbed games G(ηλ̃n) which are asymptotically sequentially

optimal. Intuitively, since u(a|σλn)→u(a|λ) as n→0, the requirement of sequential optimality for
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actions with λ(a)>λ̃(a) (from Definition 4.2) is equivalent to requiring asymptotic sequential opti-

mality for actions a with σλn(a)>η
λ̃
n(a).

9

It follows from Proposition 4.1 that λ is an `-equilibrium if and only if SOn(λ|λ̃)→0 as n→∞

for some λ̃≤λ. That is, while `-equilibrium requires robustness to some `-tremble, `-equilibrium for

a given `-tremble requires robustness to that particular `-tremble. As we shall see, the concept of

`-stable outcome will require robustness to all `-trembles, hence it will be more restrictive.

4.2 `-Stable outcomes

We now define the concept of `-stable outcome, show its existence for any game and characterize its

relationship to sequential stable outcomes. Below, we provide some properties of `-stable outcomes

and illustrate how they can be used to prove a given outcome is sequential stable or stable.

Recall that an outcome ω (of G) is a probability distribution over terminal histories, so ω∈∆(T ).

Each strategy profile σ generates a unique outcomeωσ, where each (a j)Jj=1∈ T is assigned probability

ωσ((a j)Jj=1)=
∏J

j=1σ(a j). Similarly, an `-strategy profile λ generates a unique outcome ωλ, where

the probability of each t ∈ T is ωλ(t)≡ st(λ(t)). Note that ωλ=ωσ
λ
.

Definition 4.4. ω is `-stable if, for each `-tremble λ̃, there is an `-equilibrium for λ̃ generating ω.

To briefly put our results so far into perspective, let Ω∗ denote the set of `-equilibrium outcomes,

Ω∗(λ̃) the set of `-equilibrium outcomes for λ̃, and Ω`∗ the set of `-stable outcomes. Then, we have

Ω∗ =
⋃

λ̃∈Λ̃Ω
∗(λ̃) ⊇

⋂

λ̃∈Λ̃Ω
∗(λ̃) = Ω`∗ .

That is, while the set of `-equilibrium outcomes is the union of the sets of outcomes of `-equilibria for

each of the `-trembles. the set of `-stable outcomes is instead the intersection of the sets of outcomes

of `-equilibria for each of the `-trembles. Since Ω∗ is the set of outcomes of sequential equilibria (by

Proposition 3.2), an `-stable outcome is the outcome of a sequential equilibrium.

Relationsip between `-stability and sequential stability

The concept of `-stable outcome is similar to that of sequential stable outcome (Dilmé, 2022b). It

selects behavior that remains equilibrium behavior no matter which is the form of small mistakes made

9Recall that perfect equilibrium requires exact optimality instead of asymptotic otpimality. Hence, if SOn(λ|λ̃)=0 for all n,

then σλ is a perfect equilibrium.
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by the players. As we shall see, it is much simpler to use. The reason is that our definition is stated

directly at the limit: It requires that each `-tremble has a corresponding `-equilibrium with outcomeω.

Sequential stability of ω requires that all tremble sequences have corresponding sequences of perfect

εn-equilibria (for some sequence εn→0) with convergent sequences of corresponding equilibrium

outcomes converging to ω.

Recall that Dilmé (2022b) says that ω is a sequential stable outcome if, for all tremble sequences

(ηn)n, there is a sequence (σn≥ηn)n such that ωσn→ω and SO(σn,ηn)→0. He also defines ω to

be an extensive-form stable outcome by requiring, instead, SO(σn,ηn)=0 for all n. Since extensive-

form stable outcomes are also outcomes of the agent-normal form of the game, they exist for games

with generic payoffs. Dilmé shows that all games have a sequential stable outcome and that when

an extensive-form stable outcome exists, it is sequential stable. The following result establishes that

sequential stable outcomes are `-stable, and hence `-stable outcomes exist in all games, even in those

with non-generic payoffs.

Proposition 4.3. If ω is sequential stable, then it is `-stable. Hence, an `-stable outcome exists.

The result is intuitive: Using Proposition 4.2, `-stability can be thought as requiring stability with

respect to the set of tremble sequences in the set {(ηλ̃n)n|λ̃∈ Λ̃}, while sequential stability requires

stability with respect to all tremble sequences. The result is nevertheless not trivial, since sequential

stability ensures the existence of some asymptotically optimal sequence (σn)n for each tremble se-

quence in {ηλ̃n |λ̃∈ Λ̃}, but this sequence need not be of the form (σλn)n for some λ≥ λ̃. The proof uses

the procedure in the proof of Proposition 3.1 to obain some λ∈Λ satisfying that σλn supports (σλ,µλ)

and satisfies that λ(a)≥ λ̃(a) whenever a is sequentially suboptimal. As a result, because sequential

stable outcomes always exist, `-stable outcomes always exist as well. Also, since stable outcomes of

the agent normal form of G are sequential stable, they are also `-stable.

Whether all `-stable outcomes are sequential stable is an open question. The difficulty on proving

this. Such a converse result is nevertheless not needed when there is a unique `-stable outcome. If

there is a unique `-stable outcome, then it is the unique sequential stable outcome, and hence (by

Dilmé, 2022b) it is the unique stable outcome of the agent normal form of G.

4.3 Obtaining `-stable outcomes

The goal of this section is to provide some procedures and tools that simplify obtaining `-stable out-

comes. We briefly explain some strategies an economist can use to obtain `-stable outcomes (these
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are similar to those provided in Section 4 of Dilmé, 2022b).

Necessary conditions: A first useful way to prove that an outcome ω is `-stable is by ruling out the

`-stability alternative candidates. Then, if one rules out the `-stability of all outcomes except for one,

Proposition 4.3 implies that the remaining candidate is `-stable.

Notably, `-stable outcomes share most properties of sequential stable outcomes (see Dilmé, 2022b).

For example, `-stable outcomes are sequentially rational, that is, are the outcome of a sequential equi-

librium. Hence, an outcome which is not the outcome of a sequential equilibrium it is not `-stable, and

a game with a unique sequential equilibrium outcome has a unique `-stable outcome. We now high-

light (and formally prove) that `-stable outcomes satisfy the never a weak best response (NWBR) con-

dition, which implies forward induction and iterated strict dominance (as defined in Dilmé, 2022b).

Proposition 4.4 (Never a weak best response, NWBR). Let ω be an `-stable outcome. If a∈A is not

sequentially optimal under any `-equilibrium with outcomeω, thenω is an `-stable outcome of the game

where a is eliminated (and all histories following it).

It also follows from an adaptation of Dilmé’s arguments that, like sequential stable outcomes, `-

stable outcomes satisfy on-path subgame perfection and invariance to reordering simultaneous moves.

Remark 4.1 (Signaling games). Dilmé (2022b) studies sequential stability in signaling games. He

shows that sequential stable outcomes pass the classical selection (Intuitive Criterion, D1, D2) and

that if there is a unique sequential stable outcome, it is stable as well. These properties also hold

for `-stable outcomes. The second property follows from Proposition 4.3: if a signaling game has a

unique `-stable outcome, it is the unique sequential stable outcome, and hence it is the unique stable

outcome. We omit the proof of the first property.

Example 4.1 (Continuation of Example 3.3). As Dilmé (2022b) points out, NWBR can be used to

prove that the beer outcome (where player 1 chooses qs and qw and player 2 chooses nq) is not `-

stable. Indeed, action bw is never optimal under a sequential equilibrium with such outcome, so can

be eliminated. In the resulting game, fb is never optimal, hence can be eliminated as well. In the

new game, playing bs is a profitable deviation by player 1, hence there is no equilibrium with the beer

outcome.

Through an `-tremble: Another procedure consists in proving that a given outcome is the unique

`-stable outcome (or severely reducing the set of candidates to `-stable outcome) by analyzing the

outcomes of `-equilibria for a given `-tremble. If there is an `-tremble λ̃ such that there is a unique

`-equilibrium outcome for λ̃, then such an outcome is the unique `-stable outcome.
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Examples 4.3-4.4 illustrate the procedure. In each case, we provide an `-tremble for which there

is a unique `-stable outcome. In signaling games satisfying single-crossing, such `-tremble typically

involves “high types” (the types other types want to imitate) trembling with a higher likelihood than

low types.10 Games not satisfying a single-crossing condition may have multiple `-stable outcomes.

Nevertheless, through one or more `-trembles, the economist may be able to reduce the set of outcome

candidates to some set Ω†. If all outcomes in Ω† satisfy a given property (full/partial separation,

delay, etc.), then the economist can claim that such property is “`-stable”, in the sense that all `-stable

outcomes satisfy it.

Direct proof: The last procedure consists in proving that a given outcome is stable against any `-

tremble. Even though such a procedure is, in general, more difficult to apply, it is nevertheless vastly

simpler to do using `-numbers, where it has to be shown that for all `-tremble there is an `-equili-

brium with this outcome, instead of showing that for any sequence of trembles there is a corresponding

sequence of equilibria with outcomes converging to the desired outcome.

Example 4.2 (Continuation of Example 4.1). We now prove that the beer outcome (where player 1

chooses bw and bs and player 2 chooses nb) is `-stable by explicitly showing it is stable against any

`-tremble (note that, in this simple example, the fact that the beer outcome is the only outcome of a

sequential equilibrium other than the quiche outcome implies that the beer outcome is `-stable). To

see this, fix some λ̃∈ Λ̃. It is then easy to verify that the following `-strategy profile λ is an `-equi-

librium for λ̃ with the beer outcome. We set λ(w)=1−λ(s)=0.1 and λ(a)= λ̃(a) for a∈{qs, fb}. If

λ̃(qw)>9λ(qs) then λ(qw)= λ̃(qw) and λ(nq)= λ̃(nq). Otherwise, λ(qw)=9 λ̃(qs) and λ(nq)=1/2.

The rest of the actions are determined by the requirement that
∑

a∈AI λ(a)=1.

4.4 Extended `-strategy profiles

In this section, we first extend the space of `-numbers by including the number 0. We then extend the

definitions of `-strategy profile, `-tremble, and `-stable outcome to allow some actions to be played

with probability 0. We show that all previous results remain the same when the extended concepts

are used. We finally argue using extended concepts simplifies argument in practice.

Extended `-numbers: We use L0 to denote L∪{0}, that is, the set of `-numbers plus number 0. It

is useful to think 0 as an `-number x ε y with x>0 and y=∞, so all `-numbers of the form x ε∞

10Static signaling games á la Spence (1973) satisfying a “single-crossing” condition typically have a unique stable outcome,

which is the least-costly, fully-separating outcome, called the Riley outcome (Riley, 1979).
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represent the same element (that is, for example, 2ε∞=7.1ε∞=0) and the operations defined in

Definition 2.1 apply (except that we do not allow dividing 0 by 0).

Extended `-strategy profiles: We now extend the definition of `-strategy profile (Definition 3.1) to

allow actions to be played with probability 0, but requiring that information sets still receive non-zero

likelihood.

Definition 4.5. An extended `-strategy profile is a map λ : A→ L0 satisfying that, for each I ∈I, (i)
∑

a∈AI λ(a)=1, (ii)λ(a)=π(a) for all a∈AI whenever ι(I)=0, and (iii) there is some history (a j)Jj=1∈

I such that λ(a j)>0 for all j=1, ..., J .

We let Λ0 be the set of extended `-strategy profiles, and Λ̃0 be the set of extended `-trembles

(defined analogously). Note that while we now allow some actions to be played with zero likelihood,

we require that all information sets have a history with non-zero likelihood, so conditional likelihoods

can still be computed.11 Hence, extended `-strategy profiles make it simple to compute the beliefs

over histories (a j)Jj=1 with λ(a j)=0 for some a j , since then µλ((a j)Jj=1)=0. Extended `-equilibria

and extended `-stable outcomes are also defined analogously. Note also that, for a given extended

`-equilibrium λ, we can construct an equivalent extended `-equilibrium by replacing λ(a) by st(λ(a))

for all actions a that end the game, while keeping the likelihood of all other actions the same.

Proposition 4.5. All results in Sections 3 and 4 hold if Λ and Λ̃ are replaced by Λ0 and Λ̃0, respectively.

Proposition 4.5 is useful as it permits choosing whether to work with `-numbers or extended `-

numbers to characterize sequential equilibria and `-stable outcomes. In particular, the set of `-stable

outcomes is the same independently of whether Λ̃ or Λ̃0 (and whether Λ∗(Λ̃) or Λ∗0(Λ̃0)) is used in

Definition 4.4. Working with extended `-strategy profiles is particularly useful when showing that a

given assessment is consistent, as it requires finding some `-equilibrium that generates it, so having

additional, easy-to-use `-strategy profiles is preferable. Similarly, when ruling out the `-stability of

some outcome ω, it is enough to find some extended `-tremble for which there is no `-equilibrium

with outcomeω. On the contrary, it is easier to prove a given assessment is not consistent by showing

it is not generated by any `-strategy profile than by showing that it is not generated by any extended

`-strategy profile. Similarly, proving that an outcome is `-stable is easier when considering the set of

`-trembles instead of the set of extended `-trembles.

11When using extended `-strategy profile, equation (3.2) is replaced by u(a|λ) ≡
∑

(a j )Jj=1∈T a st
�

∏

a j 6=a λ(a j )

λ(Ia)

�

uι(Ia)((a j)Jj=1) to

accommodate for the possibility that λ(a)=0.
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h ` ;

H 6, 4 3,3 0,0

L 5,−5 3,−2 0,0

Table 1

Example 4.3 (Continuation of Example 4.2). We now argue again that the quiche outcome is not `-

stable. Consider the extended `-tremble λ̃(bs)= λ̃(qs)=ε and λ̃(a)=0 otherwise, and assume there

is an extended `-equilibrium λ for λ̃. If λ(fb)<0.5 then player 1 has a profitable deviation by choosing

bs, so it must be λ(fb)≥0.5. Nevertheless, for fb to be optimal for player 2, it must be that λ(bw)≥

9λ(bs)>0= λ̃(bw), so bw must be optimal for player 1. This is a contradiction because player 1

obtains 3 by playing qw and at most 2 by playing bw.

4.5 Example: dynamic signaling

Example 4.4 (Dynamic signaling). The refinements for static signaling games (e.g., Intuitive Criterion,

D1, D2) cannot be directly applied to dynamic signaling games. As a result, ad hoc selection criteria

are often used. In this example, we illustrate how `-stability has the potential to select equilibria

across different models using the same criterion, hence easing the comparison of the results. We do

so by analyzing, in a simple and unified framework, dynamic signaling models with public (Noldeke

and Van Damme, 1990) and private (Swinkels, 1999) with preemptive offers (see also Hörner and

Vieille, 2009). This example illustrates the simplicity of using `-numbers to make stability arguments.

Consider the following dynamic signaling problem. There are two periods. There is a different

firm in every period (firm 1 and firm 2). There is one student who has one of two types, θ = L, H.

The prior about θ =H is 1/2. Only the student knows her type. Each firm has 3 options: make a high

offer (h), make a low offer (`), or pass (;). If an offer is made, the student either accepts it, A, or

rejects it, R. If acceptance happens in the first period, the game ends; otherwise, the student pays a

signaling cost and moves to the second period. The signaling cost cθ is type-dependent, and satisfies

0< cH < cL<1. The payoffs (without education costs) are given in Table 1. Notice that the expected

payoff for firm 1 if all types of the student accept for sure a low offer is 1/2, while if it offers h, its

expected payoff is −1/2. Therefore, firm 1 never offers h since it would be accepted for sure by the

students and gives it a negative payoff.

1. Public offers case: In the public offers case, the second firm observes the first firm’s offer. There
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are two outcomes of sequential equilibria: one where firm 1 offers ` and it is accepted for sure

by the student, and one where firm 1 offers ; and firm 2 offers ` which is accepted for sure. We

now prove that there is a unique `-stable outcome.

Fix an `-stable outcome ω, some λ̃ and some λ∈Λ∗(λ̃) with ωλ=ω. We use the notation

that Rθa is the action of rejection by the θ after a∈{`, h} has been offered in the first period.

Assume ỹ(RL`)> ỹ(RH`), that is, the H-student trembles to rejecting ` from firm 1 more often

than the L-student. Assume that firm 1 offers ` with positive probability. Such an offer must

be accepted with positive probability by the H-student, which implies that the L-student has a

strict incentive to accept it, and hence

y(RL`)= ỹ(RL`)> ỹ(RH`)≥ y(RH`) .

Still, if y(RL`)> y(RH`), then necessarily firm 2 offers h, which leads to a contradiction. So,

in the unique `-stable outcome, firm 1 offers ; and firm 2 offers `, which is accepted by both

student types. Therefore, `-stability (and sequential stability) does not always select the least

costly, maximally separating equilibria.

2. Private offers case: In the private offers case, firm 2 does not observe the firm 1’s offer. There

are again two outcomes of sequential equilibria: one where firm 1 offers ` and it is accepted

for sure by the student, and another outcome is described below. We now prove that there is a

unique `-stable outcome.

Fix an `-stable outcome ω, some λ̃ and some λ∈Λ∗(λ̃) with ωλ=ω. Assume that ỹ(RH`) is

the unique minimum of { ỹ(a)|a∈A}. Firm 1 makes a low offer and the student accepts it with

positive probability, since otherwise firm 2 would offer ` in equilibrium, but then firm 1 would

profitably deviate to offer ` as it would be accepted for sure. Also, firm 1 cannot hire with

probability one since, otherwise, a rejection in the period would lead firm 2 to believe the type

is H for sure and would offer h, so the student would have an incentive to deviate.12 In the

only option left, firm 1 randomizes between ` (which is accepted for sure by L and with interior

probability by H) and ;, and firm 2 randomizes between ` and h, both accepted for sure.

12Formally, assume that firm 1 hires with probability one. An off-path rejection in the first period could come from a

deviation by firm 1 (by offering ;) or from a deviation of the student (to reject). Since firm 1 earns less by offering ; than

by offering `, we have that firm 2 deems a deviation by the student as infinitely more likely than one by firm 1. Also, if

y(RL`)≤ ỹ(RH`)< y(RL`) it must be that L is indifferent on rejecting `, but then H is strictly willing to reject. It must then

be that y(RL`)> ỹ(RH`)≥ y(RH`), but this implies that firm 2 offers h for sure, hence we have a contradiction.
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5 Conclusions

In our view, this paper has three contributions. The first is developing a new language to analyze

tremble-based refinements in extensive form games. The `-numbers are simple, 2-dimensional objects,

with simple elementary operations. When used to analyze strategies, they permit easily computing

relative likelihoods of zero-probability histories.

The second contribution is to use `-numbers to obtain a straightforward characterization of the

set sequential equilibria: It coincides with the set of assessments generated by sequentially optimal

`-strategy profiles.

The final contribution is to provide new equilibrium concepts using the language of `-numbers.

Most saliently, we define `-stable outcomes, the natural analogous of stable outcomes using `-numbers.

`-Stable outcomes always exist, are easier to compute, and satisfy desirable properties. We argue that,

since an outcome is sequential stable when it is the unique `-stable outcome, our analysis provides a

method to obtain sequential stable outcomes in practice, which is illustrated through some examples.
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A Omitted Proofs

A.1 Proofs of the Results in Section 3

Proof of the Proposition 3.1

Proof. The proof follows from the arguments in the main text.

Proof of the Proposition 3.2

Proof. Fix first some `-equilibrium λ. The standard “one-period deviation principle” implies that

(σλ,µλ) is a sequential equilibrium if and only if for all I ∈I and a, a′∈AI such that σλ(a)>0 we

have u(a|σλ,µλ)≥u(a′|σλ,µλ). Note also that, for all a∈A, σλ(a)>0 if only if y(a)=0, and also

u(a|σλ,µλ)=u(a|λ). This implies that (σλ,µλ) sequential equilibrium.

Now fix some sequential equilibrium (σ,µ). Let λ be such that (σλ,µλ) = (σ,µ) (note that, by

Proposition 3.1, λ exists). That λ is an `-equilibrium follows from the fact that, for any I ∈I and a∈ I ,

we have y(a)=0 if and only if σλ(a)>0, that is, if and only if u(a|σλ)≥maxa′∈AI u(a′|σλ), which

implies u(a|λ)≥maxa′∈AI u(a′|λ).

A.2 Proofs of the Results in Section 4

Proof of Proposition 4.1

Proof. The proof follows from the arguments in the main text.

Proof of Proposition 4.2

Proof. We divide the proof into four steps:

Step 2. “Only if” part of the statement of Proposition 4.2. We begin by proving that, if λ is an

`-equilibrium for λ̃, then SOn(λ|λ̃)→ 0 as n→∞. Since λ(a)≥ λ̃(a) we have that σλn(a)≥η
λ̃
n(a)

for all n. Furthermore, σλn(a)>η
λ̃
n(a) only if λ(a)≥ λ̃(a), that is, only if

u(a|λ) ≥ u(a′|λ) for all a′∈AIa
,

since λ is an `-equilibrium for λ̃ (see Definition 4.2). Since u(a|λ)= limn→∞ u(a|σλn), we have that

lim
n→∞

max
a∈AIa

�

0, u(a′|σλn) − u(a|σλn)} = 0 .
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By letting A∗ be the set of actions a with λ(a)>λ̃(a), we define

εn ≡ max
a∈A∗

max
a∈AIa

�

0, u(a′|σλn) − u(a|σλn)} .

Note that εn → 0. Furthermore, we have that u(a|σλn)≥u(a′|σλn)−εn for all a∈A∗, that is, SOn(λ|λ̃)∈

[0,εn]. This proves the desired result.

Step 2. “If” part of the statement of Proposition 4.2. We now prove that, if λ is such that λ≥ λ̃ and

SOn(λ|λ̃)→ 0 as n→∞, then λ is an `-equilibrium for λ̃. Take some action a such that λ(a)>λ̃(a).

Note that SOn(λ|λ̃)→ 0 implies that

lim
n→∞

max
a′∈AIa

�

u(a′|σλn) − u(a|σλn)
�

= 0 .

This implies that u(a′|λ)≤u(a|σλ) for all a′ ∈ AIa
. Hence, since λ(a)>λ(a) only if a is sequentially

rational (according to λ), it follows that λ is an `-equilibrium for λ̃.

Proof of Proposition 4.3

Proof. Let ω be a sequential stable outcome, and let λ̃ be an `-tremble. Since ω be sequential stable,

there exists is a sequence (σn≥ηλ̃n})n such thatωσn→ω and SO(σn,ηn)→0. We now want to prove

that there exists an `-equilibrium for λ̃with outcomeω. Taking a subsequence if necessary, we assume

that σn supports some assessment (σ,µ).

We now recall a result from the proof of Theorem 3.1 in Dilmé (2022a).

Lemma A.1 (Lemma 3.1 in Dilmé, 2022a). Let (σn : A→ (0,1])n be a sequence. There are a strictly

increasing sequence ( jn∈N)n and a sequence ((q1
n,..., qK

n )∈R
K
++)n, for some K ∈{0, ..., |A|}, such that

1. limn→∞ q1
jn
=0 and limn→∞ qk

jn
/(qk−1

jn
)γ=0 for all γ∈R and k=2, ..., K.

2. For each a∈A there are unique α0(a)∈R and α(a)≡ (α1(a), ...,αK(a))∈RK such that

lim
n→∞

σ jn(a)

α0(a)
∏K

k=1(q
k
jn
)αk(a)

= 1 . (A.1)

(Proof of Proposition 4.3 continues.)

We apply Lemma A.1 to (σn)n, and we let ( jn∈N)n, ((q1
n,..., qK

n )∈R
K
++)n, and (α0,α) : A→ RK+1

be the corresponding sequences and functions. We let λ be an `-equilibrium such that (σλ,µλ) =

(σ,µ) (which exists by Proposition 3.2). Dilmé’s analysis implies that there is some large enough

M ∈R++ satisfying that

λ(a) ≡ α0(a)εK
∑K

k=1 M k αk(a) .
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is such that (σλ,µλ)=(σ,µ). We let Â be the set of actions sequentially optimal under λ (and hence

under (σ,µ)). There are two cases:

1. Assume first Â=A. In this case, all actions are sequentially optimal under (σ,µ). If λ(a)≥ λ̃(a)

for all a∈A, then λ is an `-equilibrium for λ̃ with outcome ω. Otherwise, for all a∈A, define

λ̂(a) as

λ̂(a) = x(a)εK y(a)

for K large enough that λ̂(a)≥ λ̃(a) for all a∈A. It is easy to verify that (σλ̂,µλ̂) = (σ,µ).

Hence, λ̃ is a `-equilibrium for λ̃ with outcome ω.

2. Assume then that Â 6=A, and fix some â∈A\Â. We first note that it must be that, for all a′∈ Â 6=A,

we have

(α0(â)/ x̃(â))1/ ỹ(â) = (α0(â
′)/ x̃(â′))1/ ỹ(â′) and α(â)/ ỹ(â)=α(â′)/ ỹ(â′) ,

or equivalently

x̃(â′) =
�

� x̃(â)
x(â)

�1/y(â)�y(â′)
x(a′) and ỹ(â′)= ỹ(â)

y(â) y(â′) . (A.2)

This follows from part 2 of Lemma A.1, and the fact that

(σn(â)/ x̃(â))1/ ỹ(â)

(σn(â′)/ x̃(â′))1/ ỹ(â′)
=
(ηλ̃n(â)/ x̃(â))1/ ỹ(â)

(ηλ̃n(â′)/ x̃(â′))1/ ỹ(â′)
=

n−1

n−1
= 1 .

Define µ ≡
� x̃(â)

x(â)

�1/y(â)
and ν ≡ ỹ(â)

y(â) . Define also, for all a∈A,

λ̂(a) = µλ(a) x(a)εν y(a) .

It is easy to see that this is an `-strategy profile. It is also clear that λ̂(a)= λ̃(a) for all a∈A\Â

(recall equation (A.2)). It is only left to show that λ̂(a)≥ λ̃(a). This follows from the fact that

since, for all a, we have σn(â)≥ηλ̃n(â
′), we also have

(σn(â)/ x̃(â))1/ ỹ(â)

(σn(a)/ x̃(a))1/ ỹ(a)
≤ 1 ,

which, from the previous arguments, implies that λ̂(a)≥ λ̃(a).
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A.3 Proofs of the Results in Section 4.3

Proof of Proposition 4.4

Proof. Let ω be a sequential stable outcome. Let â∈AI be an action that is not sequentially optimal

in any sequential equilibrium with outcome ω. Let G′ denote the game where â (and all consecutive

histories) is eliminated, and A′⊂A\{â} be its set of actions. Let λ̃′ be an `-tremble of G′. Define an

`-tremble λ̃ of G as follows:

λ̃(a) ≡







λ̃(a) if a∈A′,
∏

a′∈A′ λ̃(a
′) otherwise,

for all a∈A. Note that λ̃ is such that any history not belonging to G′ (i.e., with some a /∈A′) has zero

relative likelihood with respect to any history of G′. Let λ be an `-equilibrium for λ̃ with outcome ω

(which exists since ω is `-stable). It is then clear that the restriction of λ to A′ is an `-equilibrium for

λ̃. Indeed, â is not sequentially optimal under λ because it is not sequentially optimal under (σλ,µλ),

since (σλ,µλ) is a sequential equilibrium..

Proof of Proposition 4.5

Proof. The general idea behind the result is that any result about a extended `-strategy profile/`-trem-

ble can be proven reproducing the proof of the analogous result using a `-strategy profile/`-tremble

assigning very small likelihoods to actions assigned likelihood 0.

1. Proving Proposition 3.1 for extended `-strategy profiles is straightforward. It is clear that since

Λ0⊃Λ, each consistent assessment is generated by some extended `-strategy profile. We then

prove that each extended `-strategy profile λ0 generates a consistent assessment. Define, for all

a∈A,

λ(a) ≡







λ0(a) if λ0(a) 6=0,

εK if λ0(a)=0,

where K≡|A| (1+max{y0(a)|λ0(a) 6=0}). Note that λ is an `-strategy profile. It is easy to see

that λ and λ0 generate the same assessment, hence the assessment generated by λ0 is consistent.

2. Proving Proposition 3.2 for extended `-equilibrium is also straightforward. The “only if” part

follows from the fact that Λ∗0⊃Λ, so all sequential equilibria are generated by some extended

32



`-equilibrium. To prove the “if” part, let λ0 be a extended `-equilibrium. Define

σλn(a) ≡























(1/n)K if y(a)=∞,

x(a) (1/n)y(a) if y(a)∈ (0,∞),

Mn(λ, Ia) x(a) if y(a)=0,

where K = 1+
∑

a|y(a)6=∞ y(a). where Mn(λ, Ia) is a factor that ensures that
∑

a′∈AIa σλn(a
′)=1

and where the subindex n is initialized so that Mn(λ, Ia)≥0 for all n and a. It is then easy to

see that (σλn)n generates (µ,σ).

3. Propositions 4.1 and 4.2 (allowing that λ̃∈ Λ̃0 and λ∈Λ0 in their statements) are proven anal-

ogously.

4. Propositions 4.3 and 4.4 follow from the fact, to be proven now, that the set of `-stable outcomes

coincides with the set of extended `-stable outcomes (allowing λ̃∈ Λ̃0 and λ∈Λ0 in Definition

4.4). We divide the proof into two parts:

(a) Let ω0 be a extended `-stable outcome. Take an `-tremble λ̃∈ Λ̃. Because Λ̃⊂ Λ̃0 and ω0

is extended `-stable, there is a extended `-equilibrium for λ̃, λ0∈Λ∗0(λ̃), with outcomeω0.

Since λ0(a)≥ λ̃(a)>0, we have that λ0∈Λ∗(λ̃). This proves that ω0 is `-stable.

(b) Let ω be an `-stable outcome. Take a extended `-tremble λ̃0∈ Λ̃0. Define, for all a∈A,

λ̃(a) ≡







λ̃0(a) if λ̃0(a) 6=0,

εK if λ̃0(a)=0,

where K≡|A| (1+max{y0(a)|λ̃0(a) 6=0}). Note that λ̃∈ Λ̃. Because ω is `-stable, there is

an `-equilibrium for λ̃, λ∈Λ∗(λ̃), with outcome ω. Define, for all a∈A,

λ0(a) ≡







λ(a) if λ(a)>εK ,

0 if λ(a)=εK .

Note that λ0(a)≥ λ̃0(a) for all a∈A, and that λ0 generates the same outcome as λ. Also,

note that λ0(a)>λ̃0(a) only if λ(a)>λ̃(a), which implies that λ0∈Λ∗0(λ̃0). This proves

that ω is extended `-stable.
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B Relationship to CPSs and LPSs

In this section, we shed light on the relationship between `-strategy profiles and (i) conditional prob-

ability systems (CPSs) and (ii) lexicographic probability systems (LPSs), as they have also been used

to characterize consistent assessments.

B.1 Conditional Probability Systems

We first relate `-strategy profiles to conditional probability systems, studied in Battigalli (1996), and to

relative probability spaces, studied in Myerson (1986) and Kohlberg and Reny (1997). In this section,

we focus on the relationship of between conditional probability systems and `-strategy profiles. To

simplify the exposition, we assume that nature does not take any action.

Let S ≡ {s∈AI |s(I)∈AI ∀I ∈I} be the set of pure behavior strategies. Battigalli (1996) defines a

conditional probability system (CPS) on S as a map P : 2S×(2S\;)→ [0, 1] such that for all S1∈2S\;

we have that P(·|S1)∈∆(S1), and for all S1, S2, S3⊂S,

S1⊂S2⊂S3 implies P(S1|S3) = P(S1|S2) P(S2|S3). (B.1)

To ensure that a CPS is consistent with independent randomizations, Battigalli defines the following

property: a CPS P has the independence property if, for any partition {I′,I′′} of I and any two sets

S′1×S′′1 , S′2×S′′2 ∈ AI′×AI′′ , we have13

P(S′1×S′′1 |S
′
2×S′′1 ) = P(S′1×S′′2 |S

′
2×S′′2 ) .

Finally, Battigalli defines a strategic extended assessment as a triple (P,σ,µ), where (σ,µ) is an assess-

ment and P is a CPS satisfying

µI(h) = P
�

S(h)
�

�S(I)
�

and σ(a) = P
�

{s∈S(Ia) | s(Ia)= a }
�

�S(Ia)
�

(B.2)

for all I ∈I, h∈ I and a∈A, where S(h≡ (a j)Jj=1) is the set of elements s∈S such that s(Ia j )= a j for

all j (that is, h is on path of s), and S(I)≡∪h′∈IS(h′).

Now fix some `-strategy profile λ. For any element s∈S we define, with some abuse of notation,

its likelihood as λ(s)≡
∏

I∈I λ(s(I)). Also, for a given set S1⊂S, we use λ(S1) to denote
∑

s∈S1
λ(s).

13Our definition is slightly different than Battigalli’s in that we define the independence property over pure behavior strate-

gies instead of pure strategies (that is, we allow different information sets of the same player to be in different elements

of the partition {I ′,I ′′} of I). In our context of an extensive form game with a focus on behavior strategies, doing so is

without loss of generality since each player randomizes independently in each of her information sets.
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Finally, the conditional probability system generated by λ, denoted Pλ, as

Pλ(S1|S2) ≡ st
�

λ(S1 ∩ S2)
λ(S2)

�

for all S1, S2 ⊂ S with S2 6= ; . (B.3)

The following result illustrates the connection of `-strategy profilesand CPS:

Proposition B.1. For each `-strategy profile λ, Pλ has the independence property and (Pλ,µλ,σλ) is a

strategic extended assessment.

Corollary 3.1 in Battigalli (1996) shows that an assessment (σ,µ) is consistent only if (P,σ,µ) is a

strategic extended assessment for some P with the independence property. Proposition B.1 establishes

that one such P can be obtained from an `-strategy profile λ generating (σ,µ). Battigalli further shows

that, while the indepencence property is necessary, it is not sufficent.14 Kohlberg and Reny (1997)

obtain a similar result for relative probability systems: they show that, while a necessary condition

for consistency can be written in terms of weak indepencence and coordinate-wise exchangeablilty

of some random variables in a relative probability space, such condition is not sufficient. In contrast,

Proposition 3.1 establishes a necessary and sufficient condition for consistency of an assessment: being

generated by an `-strategy profile.

CPSs and relative probabilities are difficult to use in applications. One reason is their high dimen-

sionality (22|S|, in most games much higher than the set of `-strategy profiles, which is 2 (|A|−|I|)).

Furthermore, the requirements that a given CPS has the independence property or that a given pair

assessment-CPS is a strategic extended assessment may be difficult to verify, given the large number

of equations they entail.

B.2 Lexicographic probability systems

In a normal-form game, Govindan and Klumpp define an LPS as a finite sequence of mixed strategy

profiles (of a normal form game). To simplify the exposition, we introduce the concept of behavior

LPS as a sequence of (behavior) strategy profiles.

Definition B.1. A (full-support) behavior LPS (profile) is a finite sequence of strategy profiles σ̂ ≡

(σ j)K̂k=0, for some order K̂ ∈Z+, such that, for all a∈A, there is some k such that σk(a)>0. We use

K̂(a) to denote min{k|σk(a)>0}.

14He uses the tree in Figure 3 and argues that, while a strategic extended assessment generated by P satisfying that

P(t i |{t i , t i′}) = 0 for all i > i′ satisfies the indepencence property, it does not satisfy consistency (as we proved in Ex-

ample 3.4).
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As Govindan and Klumpp point out, (σk|ι−1(i))K̂k=0 can be interpreted as a collection of theories of

players N\i about player i’s strategy, ordered in decreasing likelihood. Using this interpretation, we

can define the assessment generated by some behavior LPS σ̂ by assigning, to each action a and each

history (a j)Jj=1∈H in some information set I ∈I, the following probability and belief:

σ(a) = σ0(a) and µ((a)Jj=1) =







0 if K̂((a j)Jj=1)> K̂(I),

CI
∏J

j=1σ
K̂(a j)(a j) if K̂((a j)Jj=1)= K̂(I),

(B.4)

where K̂((a j)Jj=1) =
∑J

j=1 K̂(a j), K̂(I) = minh∈I K̂(h), and CI is the constant that keeps µ|I a probabil-

ity distribution. In words, the strategy profile in the assessment generated by an LPS coincides with

the primary theory about each player’s strategy, and the belief at a given information set is derived by

the most likely theory from the LPS conditional on the information set being reached.

The following result illustrates the relationship between `-strategy profiles and (behavior) LPSs:

Proposition B.2. Let σ̂≡ (σk)K̂k=0 be a behavior LPS. Then, a 7→ (K̂(a),σK̂(a)(a)) for all a∈A is an

`-strategy profile that generates the same assessment as σ̂.

Proposition B.2 is illustrative of how an `-strategy profile retains the information necessary to

determine the likelihood of each action, which is given by its likelihood in the most likely theory

where it is played with positive probability. This information is sufficient to determine the consistency

and sequential optimality of assessments, as it permits assessing the relative likelihood of any two

histories. We further show a necessity result: for an assessment to be consistent, it has to be generated

by some `-strategy profile.

In applications, especially in extensive-form games, using LPSs to study behavior may require high

values for K̂ , diminishing their usefulness. Hence, the reduced dimensionality of `-strategy profiles

(R2 (|A|−|I|) instead of R(K̂+1) (|A|−|I|) in a behavior LPS, where K̂ is potentially a large number) and their

simple additive and multiplicative properties make them easier to work in practice.15

Example B.1. Figure 4 provides a simple game and a (consistent) assessment that cannot be repre-

sented by an LPS with order strictly lower than 5. For such assessment, one needs to specify 30

distributions over actions (5 for each information set). Nevertheless, most of such distributions are

irrelevant to assess sequential optimality.

15Note that Govindan and Klumpp (2003) use LPSs to characterize perfect equilibria. Nevertheless, their analysis requires

using induced lexicographic beliefs for each player (which plays a similar role as the “independence property” for CPSs),

which add a significant degree of intractability as they are (K̂ (|N |−1))-dimensional objects. Nevertheless, as we indicate

in footnote ??, the equilibrium paths of perfect and sequential equilibria coincidence for generic payoffs.
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Figure 4 Figure from Example B.1.

B.3 Proofs of the Results in Section B

Proof of Proposition B.1

Proof. It is clear that Pλ satisfies (B.1). To see that Pλ satisfies the independence property, consider a

partition {I′,I′′} of I and S′1×S′′1 , S′2×S′′2 ⊂AI′×AI′′ . Then, note that

Pλ(S′1×S′′1 |S
′
2×S′′1 ) =

Pλ
�

(S′1×S′′1 ) ∩ (S
′
2×S′′1 )

�

Pλ(S′2×S′′1 )
=

Pλ
�

(S′1∩S′2)×S′′1
�

Pλ(S′2×S′′1 )

=
(
∑

s′∈S′1∩S
′
2
λ(s′)) (

∑

s′′∈S′′1
λ(s′′))

(
∑

s′∈S′1∩S
′
2
λ(s′)) (

∑

s′′∈S′′1
λ(s′′))

=
λ(S′1∩S′2)

λ(S′2)

does not depend on S′′1 , where λ is naturally extended to AI′ and AI′′ .16 Hence, Pλ satisfies the

independence property. To prove that (Pλ,µλ,σλ) is a strategic extended assessment, notice that, for

any history h≡ (a j)Jj=1,

∑

s∈S(h)

λ(s) =
� J
∏

j=1

λ(a j)
��

∏

I 6∈{Ia j | j=1,...,J}

∑

a∈AI

λ(a)

︸ ︷︷ ︸

=1

�

= λ(h) . (B.5)

Similarly, we have
∑

s∈S(I)

λ(s) =
∑

h∈I

∑

s∈S(h)

λ(s) = λ(I) . (B.6)

As a result, using the definitions of (µλ,σλ) (Definition 3.2) and Pλ (equation (B.3)), the first condi-

tion in equation (B.2) holds. To prove that the second condition in equation (B.2) holds, fix an action

a∈A. Using S(a) to denote {s∈S(Ia) | s(Ia)= a }, and an argument similar to the one used to obtain

equations (B.5) and (B.6), we have
∑

s∈S(a)

λ(s) = λ(a)
∑

h∈Ia

λ(h) . (B.7)

16For example, λ(s′)≡
∏

I∈I′ λ(s(I)) for each s′∈AI′ , and λ(S′)≡
∑

s′∈S′ λ(s
′) for each S′⊂AI′ .
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Then, the second condition in equation (B.2) holds, and the proof is done.

Proof of Proposition B.2

Proof. We first show that λ is an `-strategy profile. To see this note that, for each information set

I , if a∈AI is in the support of σ0|AI , then K̂(a)=0, and if a∈AI is not in the support of σ0|AI , then

K̂(a)>0. It then follows that
∑

a∈AI λ(a) =
�∑

a∈AI σ
0(a)

�

ε0 = 1.

We proceed by showing that the behavior LPS and λ have the same outcome. It is clear that they

generate the same strategy profile, since σ(a)=σ0(a)= st(λ(a))=σλ(a). Take then some informa-

tion set I and history h∈ I . Recall that

λ((a j)Jj=1) =
∏J

j=1λ(a j) =
�∏J

j=1σ
K̂(a j)(a j)

�

ε
∑J

j=1 K̂(a) ,

and also that

λ(I) =
∑

h∈I λ(h) =
�∑

h∈I |y(h)=y(I) x(h)
�

ε y(I) .

Since y(h)= K̂(h) and y(I)= K̂(I) for all h∈H and I ∈I, it is clear that µ(h)=0 if and only if µλ(h)=

0. If, alternatively, K̂(h)= K̂(I) (and so y(h)= y(I)), then

µ((a j)
J
j=1) =

∏J
j=1σ

K̂(a j)

∑

h∈I |y(h)=y(I) x(h)
= st

�λ((a j)Jj=1)

λ(I)

�

= µλ((a j)
J
j=1) ,

hence the result holds.
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