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Abstract: During the liberalization process the UK regulatory authority introduced a behavioral
remedy (through price-cap regulation) and structural remedy (through divestment series) in order
to mitigate an exercise of market power and lower the influence of incumbent producers on
wholesale electricity prices. We study the impact of these remedies on the dynamics of the wholesale
electricity price during the peak-demand period over trading days. An extended autoregressive and
autoregressive conditional heteroscedasticity (AR–ARCH) model with a novel skew generalized error
distribution is used. This distribution allows one to capture the features of asymmetry, excess kurtosis,
and heavy tails. The model is extended to include individual incumbent producers’ market shares
and other explanatory variables reflecting seasonal patterns and regulatory regimes. We find that
the structural remedy was more successful than the behavioral remedy because the effect of market
share of the previously larger incumbent producer on the wholesale price is statistically insignificant.
Moreover, after the second series of divestments, price volatility reduced.

Keywords: electricity price; uniform price auction; skew generalized error distribution;
conditional volatility; regulation

1. Introduction

Great Britain was the first among the OECD countries to liberalize its electricity supply industry.
The aim of liberalization was to introduce competition into electricity wholesale generation. Similarly,
other electricity markets in Europe completed liberalization in 2007 [1]. The production level of the
electricity supply industry in Great Britain consisted of several firms where National Power (NP) and
PowerGen (PG) had dominant positions. During the liberalization process, the regulatory authority,
Office of Electricity Regulation (later renamed the Office of Gas and Electricity Markets), introduced a
behavioral remedy (through price-cap regulation) and a structural remedy (through divestment series)
at different points of time, which were targeted at the NP and PG producers.

Price-cap regulation set an explicit ceiling on time-weighted and demand-weighted annual
average prices charged for electricity production by the two incumbent electricity producers:
NP (the larger producer) and PG (the smaller producer), which together sometimes produced more
than 70% of electricity in the early 1990s. Later, divestment series were introduced in order to lower
the influence of the incumbent producers on wholesale electricity prices. Following divestment series,
the market shares of the incumbent electricity producers declined. Market share is an important factor
affecting a firm’s behavior and eventually market prices. These are summarized in Figure 1.
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Figure 1. Institutional changes and regulatory reforms during 1990–2001 [2–7].

Generally, there is no consensus regarding the optimal remedy choice (behavioral or structural)
to address market failures. Behavioral remedies try to redress specific conduct in a context where
incentives remain essentially unchanged. Structural remedies, on the other hand, are aimed at
changing the incentives of the firm(s) in the market, which is achieved once the structural remedies are
implemented [8].

European Union antitrust policy prioritizes the imposition of behavioral remedies above structural
remedies because antitrust investigations typically concern infringements which are behavioral in
nature. In the United States, on the other hand, there is a preference for structural remedies because
they are simple and relatively easy to administer [9].

However, in 2008, following the investigation of E.ON (the world’s largest utility company, Essen,
Germany) on the German wholesale electricity market, for the first time the European Commission
decided to apply a structural remedy. Specifically, it was agreed that E.ON would divest 5000 MW of
generation capacity representing about 20% of the company’s German generation portfolio [10].

As discussed in [11], the advantage of a structural remedy is that it allows for the reduction of
a firm’s market share and the prevention of the emergence or strengthening of a dominant position.
Moreover, there will be no need for subsequent monitoring and enforcement. According to [12],
structural remedies should only be imposed either where there is no equally effective behavioral
remedy or where any equally effective behavioral remedy would be more burdensome for the firm
concerned than the structural remedy.

The wholesale electricity market in England and Wales presents an interesting case study where
the regulatory authority introduced behavioral and structural remedies at different points of time.
This enables us to compare the impact of each of the remedy on wholesale electricity prices.

Most of the research on this market focuses, however, on the analysis of market power exercised
by the dominant producers. Little research has been done on the effect of reforms on wholesale
electricity prices. The authors in [6] analyze nonparametrically the volatility of weekly average
wholesale electricity prices. The authors in [13] study the effect of institutional changes and reforms
on the dynamics of daily average wholesale electricity prices using the generalized error distribution,
which allows one to capture the features of heavy tails and excess kurtosis (that is, kurtosis above 3).
For the prices in other electricity markets, a Student’s t distribution and a skew Student’s t distribution
have been used (see, for example, [14,15], respectively), which are valid to use when kurtosis is below 3.
Indeed, as described in Figure 2b, a (skew) Student’s t distribution has a peak lower than in a normal
distribution for which kurtosis is 3.

In this paper, we use an extended autoregressive and autoregressive conditional heteroscedasticity
(AR–ARCH) model with a novel skew generalized error distribution (SGED) in order to study
the dynamics of the wholesale electricity price during the peak-demand period over trading days.
SGED allows one to capture the features of asymmetry, heavy tails, and excess kurtosis. This flexible
distribution nests normal distribution as a special case (see Figure 3). We extend the AR–ARCH model
to include regime dummy variables, incumbent producers’ market shares calculated as a ratio of their
total scheduled production capacities in the day-ahead auction to forecast demand, and the seasonal
component. This model therefore allows for an analysis of the effect of incumbent producers’ market
shares on wholesale electricity prices in relation to the introduced behavioral and structural remedies.
We focus on the peak-demand period during each trading day because, as documented in the literature,
strategic bidding is most often observed during namely the peak-demand period [16].
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Figure 2. An SGED (µ, σ, β, χ) and a skew Student’s t distribution. Notes: In (a), we show special
cases of the shape parameter β = 1, β = 2, and β → +∞ which correspond to Laplace (black),
Standard Normal (red), and Uniform (green) distributions, respectively. In (b), we include a skew
Student’s t distribution with degrees of freedom equal to 8, i.e., ν = 8. It is skewed to the right because
the skewness parameter exceeds 1, i.e., χ > 1. (a) Special cases of SGED; (b) normal and skew Student’s
t distributions.
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Figure 3. All special cases of SGED (µ, σ, β, χ).

We find that the structural remedy was generally more successful than the behavioral remedy
because after the second series of divestments that, firstly, the effect of market share of the
previously larger incumbent producer on wholesale prices is statistically insignificant and, secondly,
price volatility reduced.

We limit our analysis to the period prior to 2001 because after 26 March 2001 the wholesale
electricity market in England and Wales was restructured in order to introduce bilateral trading.
Restructuring of the wholesale spot market (more precisely, a day-ahead market) for the dispatch and
pricing of electricity, however, should not provide evidence to avoid the use of spot markets in the
future. That is, a lesson that all problems stem from the use of a central auction would be wrong [17].
Dominant producers could raise prices under any set of market rules [18].

The measures designed to promote competition during the liberalization process were more
extensive in Great Britain as compared to Germany, France, Italy, or Sweden [19]. Privatization,
restructuring, market design, and regulatory reforms pursued in the liberalization process of the
electricity industry in England and Wales can be characterized as the international gold standard
for energy market liberalization [20,21]. The England and Wales electricity market could, therefore,
serve as an important source of lessons, especially for countries which have adopted a similar market
design operated by several dominant firms.
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2. Description of the Electricity Auction

At the start of liberalization, a wholesale market for electricity trading was created. Trading was
organized as a uniform price auction, where all electricity producers were asked to submit price offers
(up to three) and available capacity for each production unit. These multi-part bids were used by the
market operator (i.e., the National Grid Company, or NGC) in the Generator Ordering and Loading
(GOAL) algorithm in order to calculate half-hourly price bids [22,23].

In Figure 4, we schematically illustrate how the electricity market would have operated in a given
half-hourly trading period.

Sorted Cumulative Production Capacity (MW)

Forecast

Demand

Aggregate Step

Supply Schedule

(Merit Order)

Producer A

Producer B
bAg2
bAg1

bAc2

bAc1

Price Bid

bAg3 = SMP

(£/MWh)

kAg3kAg2kAg1 kAc2kAc1 kBc4

Figure 4. Determination of a System Marginal Price (SMP). Notes: On the vertical axis, bAc1 refers to the
price bid of electricity producer A’s first production unit, whose production capacity is kAc1 . For the
sake of simplicity, it is assumed that electricity producer A has 2 coal and 3 gas production unit types.
Price bids of all production units are ordered as would have been done by the market operator (i.e., the
NGC). The intersection of the constructed production schedule and forecast demand determines the
SMP, the wholesale electricity price. In this hypothetical example, it is electricity producer A’s third
gas production unit that determines the SMP.

For each half-hourly trading period, the pairs of a price bid and respective production capacity
of all production units were ordered based on price bids so that to construct a production schedule
(also called a merit order) that would indicate the least expensive way to meet price-inelastic forecast
demand. The methodology of the forecasting demand for electricity by the market operator was
common knowledge and independent of producers’ bidding behavior [24–26].

The production unit whose price bid in this production schedule intersects forecast demand is
called the marginal production unit. Its price bid determines the System Marginal Price (SMP), which
represents the wholesale price paid to all producers that were scheduled to produce electricity during
a half-hourly trading period [22].

3. Data

The first data set covers the period from 1 January 1992 to 30 September 2000. This data set
includes half-hourly observations on the wholesale electricity price (SMP) and demand for electricity
(load). In Figure 5, we provide an illustration of market data for 6 January 2000.
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Figure 5. SMP, forecast demand, and actual demand (6 January 2000).

The peak-demand period on this trading day was during 17:30–18:00, when the forecast demand
was at the peak of 48,215 MW and SMP is £77.89 per MWh. Changes in forecast demand can be
considered as exogenous when analyzing changes in SMP because the forecasting methodology was
independent of producers’ bidding.

Figure 6 presents changes and distribution of SMP of the half-hourly peak-demand period over
trading days. The empirical distribution (depicted through the histogram) differs substantially from
the normal distribution (depicted through the smooth curve). The differences are also confirmed by the
calculations of positive skewness, excess kurtosis, and the Jarque–Bera test statistic with its p-value.
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Figure 6. SMP during the peak-demand period over trading days (1 January 1992–30 September 2000).

In Table 1, we present a detailed analysis of changes in the SMP of the peak-demand period
across different regulatory periods summarized in Figure 1. For comparison purposes, we consider the
price-cap regulation period (i.e., Regime 3) as the reference period.
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Table 1. Summary statistics for SMP (£/MWh) during the peak-demand period over trading days.

SMP
Regime 1

(Jan 92
–Mar 93)

Regime 2 (Apr 93
–Mar 94)

Regime 3 (Apr 94
–Mar 96)
Price-Cap

Pre-Regime 4
(Apr 96
–Jul 96)

Regime 4 (Jul 96
–Jul 99)

Divestment 1

Regime 5 (Jul 99
–Sept 00)

Divestment 2

Mean 27.5 32.9 37.2 35.3 42.0 36.3
Change of
Mean −9.7 −4.3 −2.0 4.8 −0.9

t-test −14.4 −5.9 −1.4 5.5 −1.1
t-critical −2.0 −2.0 −2.0 2.0 −2.0
Min 17.3 14.9 7.9 17.2 14.5 15.5
Max 46.2 55.9 211.2 76.7 105.1 77.9
St Dev 3.7 6.5 17.6 11.4 19.3 12.1
F-test 23.0 7.3 2.4 1.2 2.1
F-critical 1.2 1.2 1.3 1.1 1.2
Coef of Var (%) 13.4 19.8 47.4 32.3 45.9 33.5
Obs 456 365 731 91 1114 439

For testing the equality of means, we first needed to test the equality of variances using the F-test.
The results indicate that, during the price-cap regulation, the average SMP was statistically higher
than in the earlier periods (i.e., Regimes 1 and 2). The average SMP rose further after the first series of
divestments was introduced (i.e., Regime 4). During Pre-Regime 4 and Regime 5 periods, the average
SMP was lower than during the price-cap regulation period.

Similar to Figure 6, in Figure 7, we present a log-transformed SMP (i.e., the natural logarithm of
SMP), which is used in the empirical part. Using a log transformed time series may help to mitigate
the effect of outliers and allow one to interpret regression results in terms of elasticities. (We observe a
high SMP of about £211/MWh during the peak-demand period on 4 April 1995. This price spike was
brought about by a mistaken mix of technical parameters that the GOAL algorithm had to accept. This
explanation is based on a comment from Richard Green.)
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Figure 7. Log of SMP during the peak-demand period over trading days (1 January 1992–
30 September 2000).

The results in the histogram in Figure 7 show that the distribution of log of SMP is skewed to
the right and has a peak higher than the peak of normal distribution. Moreover, the result of the
Jarque–Bera test rejects the null hypothesis that log of SMP is normally distributed. These issues could
be addressed by considering the skew generalized error distribution (SGED) (we do not consider a
Student’s t distribution because it assumes a kurtosis below 3), which nests a normal distribution as a
special case as shown in Figures 2 and 3.
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The second data set covers the period 1 January 1993–30 September 2000 and includes half-hourly
data on capacity bids and price bids. Using [3], we can identify production units that were divested
from NP and PG during horizontal restructuring, which is important in determining total scheduled
capacities of the incumbent producers.

We consider market share as the ratio of total scheduled capacity to forecast demand from the
day-ahead bidding data. (The usual interpretation of a market share could be the share of electricity
sold on the market, which is not what we consider in this paper.) A firm’s scheduled capacity
is based on submitted available capacity of various production units necessary to satisfy forecast
demand as described in Figure 4. Market share can be considered as an independent variable when
analyzing price changes because SMP was determined after the bidding of producers (i.e., after their
submission of price and capacity bids). Sometimes the inclusion of market share may, however, lead
to the endogeneity problem. For example, like in the feed-in tariff, when first the electricity price is
announced and then the bidding of electricity producers takes place.

In Tables 2 and 3, we present summary statistics for market shares of the NP and PG producers,
which in the early years sometimes served more than 70% of the demand.

Table 2. Summary statistics for NP’s market share during the peak-demand period over trading days.

Regime 1
(Jan 93

–Mar 93)

Regime 2
(Apr 93

–Mar 94)

Regime 3 (Apr 94
–Mar 96)
Price-Cap

Pre-Regime 4
(Apr 96
–Jul 96)

Regime 4 (Jul 96
–Jul 99)

Divestment 1

Regime 5 (Jul 99
–Sept 00)

Divestment 2

Mean 0.449 0.426 0.367 0.297 0.229 0.124
Min 0.341 0.286 0.165 0.227 0.086 0.062
Max 0.506 0.503 0.501 0.350 0.317 0.181
St Dev 0.037 0.038 0.047 0.028 0.034 0.022
Coef of Var (%) 8.21 8.93 12.68 9.44 14.98 17.96
Obs 90 365 731 91 1114 439

Table 3. Summary statistics for PG’s market share during the peak-demand period over trading days.

Regime 1
(Jan 93

–Mar 93)

Regime 2
(Apr 93

–Mar 94)

Regime 3 (Apr 94
–Mar 96)
Price-Cap

Pre-Regime 4
(Apr 96
–Jul 96)

Regime 4 (Jul 96
–Jul 99)

Divestment 1

Regime 5 (Jul 99
–Sept 00)

Divestment 2

Mean 0.278 0.247 0.245 0.230 0.202 0.141
Min 0.219 0.128 0.123 0.166 0.096 0.069
Max 0.346 0.318 0.331 0.277 0.284 0.193
St Dev 0.033 0.035 0.035 0.025 0.028 0.017
Coef of Var (%) 11.98 14.06 14.21 10.84 13.97 11.99
Obs 90 365 731 91 1114 439

Based on the analysis of the coefficient of variation, we find that during almost all regime periods
the market share of PG changed more than the market share of NP. However, after the second series of
divestments, when on average the market share of NP was lower than the market share of PG, we find
that changes in the market share of NP were higher. This could be the result of an unequal horizontal
restructuring where NP divested more generation capacity than did PG. Therefore, it is of interest to
determine whether, after the divestment series, the effect of incumbent producers’ market shares on
SMP remained significant or not.

4. Methodology

In order to analyze the dynamics of SMP during the peak-demand period over trading days we
consider the following model:

lsmpt = a0 +
P

∑
i=1

ai lsmpt−i + w′t · b + εt (1)
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ht = α0 +
p

∑
i=1

αi ε2
t−i + z′t · δ. (2)

The first equation is called the mean equation and is analyzed using an autoregressive process
with maximum lag order P, that is, AR(P). In this equation, the dependent variable lsmpt is a natural
logarithm of SMP (the wholesale price of electricity) during the peak-demand period of trading day t
in the day-ahead auction. The AR(P) process for lsmpt with selected lags of up to order P allows one
to take into account partial adjustment effects and seasonality (cyclical or periodic) features.

Next, in the mean Equation (1), wt is a vector of explanatory variables including incumbent
producers’ market shares, the natural logarithm of forecast demand, and sine and cosine periodic
functions. Incumbent producers’ market shares are calculated as a ratio of their total scheduled
capacities to forecast demand. The inclusion of market shares is also partly consistent with the
methodology in [27], which considers the effect of market concentration measured through the
Herfindahl index on Lerner index from April 1996 to September 2002. Interacting the market shares
with regime dummy variables should in particular allow for a more detailed analysis of the impact of
divestment series on SMP.

Finally, εt is the disturbance term such that E (εt|It−1) = 0, where It−1 represents the information
set at time t− 1. The disturbance term may be heteroscedastic, which then does not allow for statistical
inference about the significance of estimated parameters in the mean equation.

In case the disturbance term has serial correlation or heteroscedasticity problems, one could apply
a correction to the standard errors (e.g., Newey–West) or apply the generalized least squares method
based on normal distribution (like in [27]). These approaches take into account serial correlation and
heteroscedasticity problems in the disturbance term, which then may allow for statistical inference.

Another approach to address the heteroscedasticity problem in the disturbance term could be to
consider the autoregressive conditional heteroscedasticity process with maximum lag order p, that is,
ARCH(p). This approach was first introduced and applied in [28] to estimate the means and variances
of inflation in the UK.

The heteroscedasticity can, therefore, be modeled by the second equation, which is called
the volatility equation. Conditional variance and volatility terms (“conditional” is in the sense of
conditional on information at time t− 1) are used interchangeably in the literature, which is denoted
by var (εt|It−1) = ht, where It−1 represents the information set at time t− 1. (Volatility can also be
rewritten in the following way ht = var (εt|It−1) = E

((
εt − E(εt)

)2|It−1

)
= E

(
ε2

t |It−1
)
, where we

used E (εt|It−1) = 0.) In this volatility Equation (2), zt is a vector including regime dummy variables,
and sine and cosine periodic functions.

The mean Equation (1) and volatility Equation (2) are jointly called the AR(P)–ARCH(p) model,
which we extend by including external regressors. In order to estimate these two equations jointly, a
distributional assumption needs to be made for the so-called standardized residuals νt = εt/

√
ht. The

authors in [28] assume that νt are independent and identically distributed (i.i.d.) and follow a standard
normal distribution. In our extended AR(P)–ARCH(p) model, we assume that νt is independent and
identically distributed (i.i.d.) and follows a skew generalized error distribution. This distribution
is characterized by four parameters: mean µ, standard deviation σ, shape β (β < 2 corresponds to
a leptokurtic distribution with heavy tails and with a peak that is more acute and higher than in a
normal distribution), and skewness χ (χ > 1 corresponds to a distribution skewed to the right). The
skew generalized error distribution is denoted by SGED (µ, σ, β, χ) and described in Figure 2.

Figure 2a describes three special symmetric cases of SGED (µ, σ, β, χ) depending on the value of
the shape parameter β and the fixed values of µ = 0, σ = 1, and χ = 1: Laplace distribution when
β = 1, normal distribution when β = 2, and uniform distribution when β→ +∞. The symmetric case
of the SGED when χ = 1 is known as a generalized error distribution where β is a free parameter. (The
skewness coefficient and the skewness parameter are not the same concepts. The sample skewness
coefficient is a sample statistic, whereas the skewness parameter is the fourth parameter describing the
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SGED. For a distribution skewed to the right (i.e., with a longer right tail), the skewness coefficient is
positive and the skewness parameter is greater than one.)

As described in Figure 2b, in cases of heavy tails and a peak lower than in the normal distribution,
a Student’s t distribution could be applicable. However, in the histogram plot in Figure 7, we find that
the peak in the distribution of log of SMP is higher than that in the normal distribution. That is why
we do not consider a Student’s t distribution. At the same time, though, as the number of degrees of
freedom increases, a Student’s t distribution approaches a normal distribution, which is a special case
of SGED.

In Figure 3, we schematically illustrate related distributions, where SGED depending on four
parameters represents the most flexible and general type of distribution.

In Appendix C, we examine model adequacy by verifying the validity of distributional
assumptions of standardized residuals ν̂t based on the Brock–Dechert–Scheinkman (BDS) test, the
Ljung–Box Q-test, skewness and kurtosis measures, kernel density and quantile–quantile plots, and
the Jarque–Bera and Kolmogorov–Smirnov normality tests [29–31]. Rejecting normality may not mean
that the empirical distribution is SGED. That is why we additionally perform the goodness of fit
test. Finally, in order to test if the volatility model is correctly specified, we perform the sign bias
test developed by [32]. Verifying the validity of distributional assumptions is important in analyzing
economic time series with time-varying volatility and for the subsequent interpretation of results.

5. Results

Because stationarity in the time series analysis is a usual requirement in order to allow for
modeling and statistical inference, we first provide the results of the stationarity test. We then analyze
seasonality properties using the correlogram and periodogram plots. Next, we provide our estimation
results for the mean and volatility equations.

5.1. Stationarity Test

We test the stationarity of log of SMP during the half-hourly peak-demand period over trading
days using the Augmented Dickey–Fuller (ADF) test with a constant term [33]. This test allows us
to control for the possible presence of the serial correlation in the residuals. The maximum lag order
is reduced to 21 based on the Schwarz information criterion (SIC). The results of the ADF test are
summarized in Table 4.

Table 4. The ADF test for the log of the SMP time series.

Null hypothesis: the log of the SMP time series has a unit root
Exogenous: constant
Lag length: 21 (Automatic based on SIC)

ADF test statistic for the log of the SMP time series −5.349

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root: 1% critical value = −3.432,
5% critical value = −2.862, and 10% critical value = −2.567.

The unit-root null hypothesis is rejected and therefore we conclude that the log of the SMP time
series is stationary. This test result allows us to apply the correlogram and periodogram plots for
seasonality analysis, which are presented in the next section.

In Table 5, we similarly present the stationarity test results for the log of the forecast demand time
series, which is included as an exogenous variable in modeling the dynamics of the SMP.

The unit-root null hypothesis is rejected, so we conclude that the log of the forecast demand time
series is stationary. This test result allows us to apply the Fourier transform in order to construct the
periodogram plot for the log of the forecast demand time series. We believe that there may be common
frequencies with those of SMP related to seasonality pattern. Including the log of forecast demand may,
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therefore, lead to a parsimonious model without all frequencies of 2π/7, 4π/7, and 6π/7 necessarily
being used in sine and cosine periodic functions in order to model the seasonality pattern.

Table 5. ADF test for the log of the forecast demand time series.

Null hypothesis: the log of the forecast demand time series has a unit root
Exogenous: constant
Lag length: 28 (Automatic based on SIC)

ADF test statistic for the log of the forecast demand time series −3.650

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root: 1% critical value = −3.432,
5% critical value = −2.862, and 10% critical value = −2.567.

5.2. Seasonality Analysis

In order to analyze seasonality properties and partial adjustment effects on the time domain, we
used the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots, respectively.
They are summarized in the correlogram presented in Figure 8.
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Figure 8. Correlogram for the log of the SMP time series.

We find that the ACF plot contains spikes at lags of multiples of 7 and 364, which reflect the
weekly and annual seasonality patterns in SMP, respectively. These results are empirically important
not only for our specification of the AR(P) process but also for the analysis of firm level data in
general including other energy markets. For example, Ref. [34] in the analysis of firm level data of
the California electricity market allows for heteroscedasticity and serial correlation in the shocks by
computing Newey–West standard errors with a 7-day-lag moving-average structure. The authors
in [35,36] in the analysis of market power in the England and Wales wholesale electricity market
apply producer–production unit–day of the week clustered standard errors, where the day of the
week component allows one to take into account the weekly seasonality pattern, which we also find in
this research.

Fourier transform (FT) allows for the analysis of seasonality patterns on the frequency
domain. Fourier transform of a real-valued function p(t) on the domain [0, T] is defined as

F(i ω) = F{p(t)} =
T∫
0

p(t) e−iωt dt, where i is the imaginary unit such that i2 = −1.

Based on this definition, the numerical procedure computes |F(i ωk)| ≈
∣∣∣∣T−1

∑
t=0

pt e−iωkt
∣∣∣∣ ≈

|(pt, cos ωkt)− i (pt, sin ωkt)| =
√
(pt, cos ωkt)2 + (pt, sin ωkt)2, where ωk = k

N−1 · 2π,
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k = 0, 1, 2, . . . , N − 1 , and N determines the grid. The expressions in parentheses represent scalar
products, which in statistical terms measure the covariation between the price time series and the
cosine or sine functions for different values of frequency ωk. The optimization finds such values of ωk
that would explain a large portion of variation in prices. A graph where the absolute values of the
Fourier transform are plotted on the frequency domain is known as a periodogram. The frequencies
ωk where the absolute values of Fourier transform |F(iωk)| achieve local maxima could be used in sine
and cosine functions in order to explain seasonal variation in the data.

In Figure 9, we summarize in periodogram plots the results of the absolute values of Fourier
transform |F(iωk)| for the log of the SMP and the log of the forecast demand time series.
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Figure 9. Periodogram plots for the log of the SMP and the log of the forecast demand time series.

The periodogram plot suggests using 2π
7 , 4π

7 , and 6π
7 as frequencies for the sine and cosine

periodic functions. These periodic functions could incorporate the fact that the behavior of market
participants may partly be similar over weeks (for example, one Monday being partly similar to the
previous Monday in terms of people’s or the production sector’s electricity consumption pattern).

However, the disadvantage of the Fourier transform is that it does not tell us directly which
functions should be used with these identified frequencies: only sine, only cosine, or both. For this
purpose, we look at correlations presented in Table 6.

Table 6. Correlation of the log of the SMP and the log of the forecast demand with periodic functions.

Variable cos
( 2π

7 t
)

sin
( 2π

7 t
)

cos
( 4π

7 t
)

sin
( 4π

7 t
)

cos
( 6π

7 t
)

sin
( 6π

7 t
)

log(SMP) −0.18 *** 0.14 *** −0.10 *** 0.10 *** −0.06 *** 0.02
log(Forecast demand) −0.44 *** 0.20 *** −0.19 *** 0.19 *** −0.07 *** 0.07 ***

Note: *, **, and *** stand for the 10%, 5%, and 1% significance levels, respectively.

The correlation analysis presented in Table 6 suggests that variable sin
( 6π

7 t
)

should not be
included because correlation between this variable and the dependent variable log (SMP) is not
statistically significant.

5.3. Estimation of the Mean and Volatility Equations

Based on the detailed analysis of the correlogram and periodogram plots, we specify the lag
structure and frequencies for the sine and cosine functions in the mean and volatility equations.
The results presented in Tables 7 and 8 include standard errors of parameter estimates based
on maximum likelihood estimation. These standard errors are correct because all distributional
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assumptions for νt are satisfied. In particular, in Appendix C, we test in detail the distributional
assumptions for νt of being i.i.d. and following SGED. The test results confirm the validity of our
distributional assumptions.

Table 7. Mean equation lsmpt = a0 +
P
∑

i=1
ai lsmpt−i + w′t · b + εt.

Intercept Term and Coef Std Err Exogenous Variables Coef Std Err
Lagged Terms lsmpt−i âi b̂j

â0 −1.09005 *** 0.00290 Regime 1t · SNP
t 0.03584 *** 0.00011

lsmpt−1 0.30204 *** 0.00073 Regime 2t · SNP
t 0.28354 *** 0.05289

lsmpt−2 0.11736 *** 0.00031 SNP
t −0.01995 *** 0.00007

lsmpt−3 0.06675 *** 0.00017 Pre-Regime 4t · SNP
t 0.90364 0.60383

lsmpt−4 0.06126 *** 0.00016 Regime 4t · SNP
t 0.26883 ** 0.14972

lsmpt−6 0.12551 *** 0.00035 Regime 5t · SNP
t −0.59855 0.38660

lsmpt−7 0.19530 *** 0.00049 Regime 1t · SPG
t −0.28930 *** 0.00078

lsmpt−9 −0.09317 *** 0.00024 Regime 2t · SPG
t −0.52879 *** 0.08924

lsmpt−12 −0.05304 *** 0.00014 SPG
t 0.30861 *** 0.00083

lsmpt−14 0.11632 *** 0.00031 Pre-Regime 4t · SPG
t −1.08304 0.77633

lsmpt−21 0.09109 *** 0.00023 Regime 4t · SPG
t −0.17788 0.17213

lsmpt−22 −0.05007 *** 0.00013 Regime 5t · SPG
t 0.54115 0.33167

lsmpt−24 −0.04189 *** 0.00011 sin(2πt/7) 0.02114 *** 0.00007
lsmpt−44 −0.04919 *** 0.00013 sin(4πt/7) 0.02690 *** 0.00008
lsmpt−49 0.05135 *** 0.00013 cos(6πt/7) −0.01248 *** 0.00004
lsmpt−55 −0.02990 *** 0.00008 ldemandt 0.16719 *** 0.00031
lsmpt−111 −0.04056 *** 0.00011
lsmpt−164 −0.04248 *** 0.00011 R2 0.606
lsmpt−364 0.06847 *** 0.00018 Obs 2823

Notes: The inclusion of some of the lags of the dependent variable helps as a correction for serial correlation in
the error term. In the table, lsmpt and ldemandt stand for the natural logarithm of the SMP and the forecast
demand during the peak-demand period of trading day t (t = 1, 2, . . . , 3196), respectively. The number of
included observations is less because of lagged terms. wt is a vector of exogenous variables including market
shares interacted with regime dummy variables, periodic functions, and forecast demand. Standard errors
are based on maximum likelihood estimation. *, **, and *** stand for the 10%, 5%, and 1% significance
levels, respectively.

Table 8. Volatility equation ht = α0 +
p
∑

i=1

(
αi ε2

t−i + γi It−i · ε2
t−i

)
+ z′t · δ.

Intercept Term and Coef Std Err Exogenous Variables Coef Std Err
ARCH Terms ε2

t−i δ̂j

α̂0 0.03824 *** 0.00012 Regime 1t −0.03342 *** 0.00011
ε2

t−1 0.09687 *** 0.00035 Regime 2t −0.02853 *** 0.00107
ε2

t−2 0.07501 *** 0.00032 Pre-Regime 4t 0.02269 0.01484
ε2

t−4 0.04659 *** 0.00018 Regime 4t 0.00589 ** 0.00341
ε2

t−5 0.05782 *** 0.00019 Regime 5t −0.00667 ** 0.00364
ε2

t−6 0.07095 *** 0.00024 sin(2πt/7) 0.00203 *** 0.00001
ε2

t−7 0.00479 *** 0.00003 cos(2πt/7) 0.00468 *** 0.00001
It−1 · ε2

t−1 0.15345 *** 0.00053
It−7 · ε2

t−7 0.04791 *** 0.00023 SGED parameters
Shape parameter, β̂ 1.46803 *** 0.05237
Skewness parameter, χ̂ 1.05424 *** 0.02471

Notes: ht stands for conditional volatility as described in Footnote 4. It−i is an indicator function equal to
1 if εt−i < 0 and 0 otherwise. zt is a vector of exogenous variables including regime dummy variables and
periodic functions. Standard errors are based on maximum likelihood estimation. *, **, and *** stand for the
10%, 5%, and 1% significance levels, respectively.
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In Table 7, we provide our estimation results for the mean equation, which includes lags of the
dependent variable and exogenous variables (market shares interacted with regime dummy variables,
periodic functions, and forecast demand).

The price-cap regulation period (i.e., Regime 3 described in Figure 1) is considered as a reference
period. The interaction terms between the regime dummy variables and market shares of incumbent
producers allow one to analyze changes in the effect of the incumbents’ market shares on SMP.

Changes in the effect of market shares on SMP are statistically significant before the price-cap
regulation period. However, these changes are mostly statistically insignificant after the divestment
series is introduced.

The estimation results for the volatility equation, including regime dummy variables and periodic
functions as exogenous variables, are presented in Table 8.

Again the price-cap regulation period is considered as a reference period. Coefficient estimates
in front of regime dummy variables represent estimates of changes in the intercept term during the
other regime periods. These estimates are all statistically significant except for the Pre-Regime 4 period.
Interestingly, we find that the second series of divestments was more successful in terms of reduced
price volatility since the negative change in the intercept term is also statistically significant.

In estimating the volatility equation, we allow for volatility asymmetry. In other words, we allow
for the asymmetric effects of past positive and negative shocks εt−i on volatility following [37]. In this
approach, αi measures the direct effect of past shock εt−i, and γi captures the additional effect of
negative shock εt−i (i.e., in case εt−i < 0) on volatility.

The sum of coefficients in front of the lagged terms in the mean equation is 0.8 and in front of the
ARCH terms in the volatility equation is 0.5. This is consistent with the stability requirement of being
less than 1. Moreover, the positivity of the coefficients of ARCH terms and the intercept term in the
volatility equation guarantees positivity of conditional volatility.

The estimates of the shape and skewness parameters of SGED (µ, σ, β, χ) suggest that the
empirical distribution of standardized residuals ν̂t has higher kurtosis than in the case of normal
distribution (because the estimated shape parameter β̂ is statistically lower than 2) and is skewed to
the right (because the estimated skewness parameter χ̂ is statistically greater than 1). If the kurtosis
coefficient is equal to 3 (i.e., the shape parameter β = 2) and the skewness coefficient is equal to 0 (i.e.,
skewness parameter χ = 1), then the SGED narrows down to the special case of normal distribution
(see Figure 2b). The results are summarized in Tables 8 and A7.

6. Discussion

In the specification of the mean and volatility equations, we consider the price-cap regulation
period (i.e., Regime 3) as a reference period. In the mean equation, in particular, coefficient estimates
in front of regime dummy variables interacted with market share reflect changes in the effect of
market share on SMP in comparison to the reference period. This approach allows us to understand if,
compared to the price-cap regulation period, the observed changes in the effect of market share on
SMP during the other regime periods are economically and statistically significant.

In the mean equation, the incumbent producers’ market shares represent an important factor for
the policy analysis of the impact of divestment series. As summarized in Table 7, changes in the slope
coefficient of market shares for both incumbent producers are statistically significant before price-cap
regulation, but are mostly statistically insignificant after the divestment series.

The finding that changes in the effect of market shares are statistically insignificant may not mean
that the effect of market shares on SMP after the divestment series is also statistically insignificant.
We need to test the significance of the effect of market shares for each regime period separately.
Since Regime 3 in Table 7 represents the reference period, first we calculate for the other regime
periods, the slope coefficient in front of incumbents’ market shares by adding the coefficient value
during Regime 3 (i.e., coefficient b̂3) and the respective change coefficient (i.e., the coefficient in front
of market share interacted with the regime dummy variable). In particular, the slope coefficient of
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NP’s market share for Regime 1 would be the sum of b̂1 = 0.03584 and b̂3 = −0.01995, which is
approximately 0.0159. These calculations are presented in Table 9.

Table 9. The effect of market share of NP and PG on SMP across different regimes.

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5

(Jan 93–Mar 93) (Apr 93–Mar 94) (Apr 94–Mar 96) (Apr 96–Jul 96) (Jul 96–Jul 99) (Jul 99–Sept 00)
Price-Cap Divestment 1 Divestment 2

b̂1 + b̂3 b̂2 + b̂3 b̂3 b̂4 + b̂3 b̂5 + b̂3 b̂6 + b̂3

Coef of SNP
t 0.0159 0.2636 -0.0200 0.8837 0.2489 −0.6185

Std Err 0.0001 0.0529 0.0001 0.6038 0.1497 0.3866
t-test 121.8835 4.9836 −307.3769 1.4635 1.6623 −1.5998
t-critical 2.0 2.0 −2.0 2.0 2.0 −2.0
Coef of SPG

t 0.0193 −0.2202 0.3086 −0.7744 0.1307 0.8498
Std Err 0.0011 0.0892 0.0008 0.7763 0.1721 0.3317
t-test 17.1774 −2.4672 372.2598 −0.9975 0.7594 2.5621
t-critical 2.0 −2.0 2.0 −2.0 2.0 2.0
Obs 90 365 731 91 1114 439

Note: Calculations are based on Table 7.

The dependent variable is the natural logarithm of the SMP and market shares are represented as
a number, which is why the estimated slope coefficients in front of market shares in Tables 7 and 9
can be interpreted in percentages. For example, for Regime 1, when the market share of NP increases
by 1%, then we can expect the SMP to increase by 0.0159%. A larger market share associated with a
higher SMP is not consistent with competitive bidding and may be the result of capacity withholding.
That is, a producer may reduce output from low-cost plants and instead increase output from more
expensive plants. This strategy is not consistent with competitive bidding because an equilibrium
price will be higher.

Capacity withholding was already raised in the literature for various energy markets [25,35,38–40].
When demand is expected to be high, even small decreases in the cheaper available capacity may lead to
higher prices because the equilibrium takes place at the steeper part of the aggregate supply schedule.

On the other hand, if a producer behaves competitively by submitting price bids reflecting
marginal costs, then this may lead to more of its capacity being scheduled for electricity production
and hence a larger market share. At the same time, thanks to competitive bidding, equilibrium price is
expected to be lower. Therefore, increased scheduled capacity (i.e., a larger market share) associated
with a lower SMP is consistent with competition. We observed this effect, for example, for PG during
Regime 2 (a negative estimated coefficient of −0.2202 presented in Table 9.

In order to test if the effect of market shares is statistically significant, we need to calculate the
respective t-test values, which requires the knowledge of standard errors. These standard errors are
calculated based on the variance-covariance matrix of estimated coefficients. In particular, in order to
test if the effect of market share of NP is statistically significant in Regime 1, we test the following null
hypothesis: b1 + b3 = 0. For this purpose, we calculate the t-test value in the following way:

t-test =
b̂1 + b̂3 − 0
s.e.(b̂1 + b̂3)

=
b̂1 + b̂3√

var(b̂1) + var(b̂3) + 2cov(b̂1, b̂3)
. (3)

The results are presented in Table 9. We find that the effect of market shares on SMP is significant
during and before price-cap regulation.

After both divestment series, the effect of NP’s market share on the SMP is statistically insignificant.
This could be regarded as the structural remedy being effective in mitigating the effect of market share
on the SMP for NP. After the second series of divestments, the effect of market share on the SMP for
PG is, however, statistically significant.

The two incumbent producers were affected differently by divestment series and the structural
remedy was effective only for NP. This could be related to unequal horizontal restructuring where
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NP divested more of its capacity than did PG. As a result, after the second series of divestments PG’s
market share was a bit larger than that of NP (Tables 2 and 3).

These results of the effect of market shares on SMP during the peak-demand period across
trading days are new. In the related literature, there were studies analyzing peak-demand periods.
For example, market power analysis in [23,36,41].

We also find that an increase in forecast demand by 1% is associated with higher SMP by about
0.17%. This positive relationship is consistent with the market design presented in Figure 4.

Similar to the calculations in Table 9, we use the results in Table 8 in order to present in Table 10
intercept estimates for different regime periods in the volatility equation. In order to test the significance
of the intercept term during Regime 1, we test H0 : δ1 + α0 = 0. Here we again calculate the t-test
value in the following way:

t-test =
δ̂1 + α̂0 − 0
s.e.(δ̂1 + α̂0)

=
δ̂1 + α̂0√

var(δ̂1) + var(α̂0) + 2cov(δ̂1, α̂0)
. (4)

Table 10. Volatility across different regimes.

Regime 1 Regime 2 Regime 3 Pre-Regime 4 Regime 4 Regime 5

(Jan 93–Mar 93) (Apr 93–Mar 94) (Apr 94–Mar 96) (Apr 96–Jul 96) (Jul 96–Jul 99) (Jul 99–Sept 00)
Price-Cap Divestment 1 Divestment 2

δ̂1 + α̂0 δ̂2 + α̂0 α̂0 δ̂3 + α̂0 δ̂4 + α̂0 δ̂5 + α̂0

Intercept 0.0048 0.0097 0.0382 0.0609 0.0441 0.0316
Std Err 0.0002 0.0011 0.0001 0.0148 0.0034 0.0036
t-test 23.8783 9.1378 321.3917 4.1052 12.9518 8.6768
t-critical 2.0 2.0 2.0 2.0 2.0 2.0
Obs 90 365 731 91 1114 439

Note: Calculations are based on Table 8.

The intercept term for each regime period is found to be statistically significant. The results also
indicate that, during the price-cap regulation period, volatility was higher than in the previous periods.
The authors in [6] also found that price volatility increased during the price-cap regulation period.
The authors suggest that the incumbent electricity producers could have been deliberately increasing
price volatility in order to enjoy higher risk premia in the contract market. After the second series of
divestments, we find that price volatility reduced, which we again attribute to the effectiveness of the
structural remedy.

Besides [6], price volatility in this market was analyzed in [13] for the daily average SMP using a
generalized error distribution in order to incorporate the features of heavy tails and excess kurtosis.
Here, however, we use a more flexible skew generalized error distribution, which reflects the features
of not only heavy tails and excess kurtosis but also the asymmetry of distribution. Moreover, we do not
use the average SMP as was done in [13]. Instead, we consider SMP during the peak-demand period
over trading days. We, however, do not consider fuel prices because they are available as quarterly
average prices, which are presented in Figure A3. This approach has not been considered in the earlier
research on the England and Wales electricity market.

Our findings do not indicate an absolute advantage of the structural remedy over the behavioral
remedy. In particular, we find that, after the first series of divestments, price volatility increased
and then reduced after the second series of divestments. On the other hand, the effect of market
share is qualitatively similar during the price-cap regulation period and after the second series of
divestments is introduced. Nevertheless, the effect of market share on SMP for the previously larger
incumbent producer is found to be statistically insignificant after the structural remedy is introduced.
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7. Conclusions

This paper analyzes the dynamics of the SMP (the wholesale price) in the England and Wales
electricity market in relation to the introduced behavioral remedy (through price-cap regulation) and
structural remedy (through the divestment series). For this purpose, we consider an AR–ARCH
model, which is extended to include incumbents’ market shares. We consider a skew generalized
error distribution (SGED) that takes into account asymmetry, excess kurtosis, and heavy tails. We also
conduct several statistical tests in order to verify the relevance of applying this distribution. This is
necessary for checking the model adequacy and subsequent interpretation of results.

The effect of market shares on the SMP in relation to a divestment series has not been analyzed
before. We find that the effect of incumbent producers’ market shares on SMP is sometimes mutually
opposite. On the one hand, a larger market share associated with a higher SMP may be related to
the incentive to increase more expensive available capacity at the expense of reducing some cheaper
available capacity in order to increase prices. On the other hand, if a firm bids competitively, then it
may have a larger market share and tend to decrease the equilibrium price.

When comparing the two kinds of remedies, we find qualitatively similar results in the effect
of market share during the price-cap regulation period and after the second series of divestments.
Statistically, however, the effect of market share after the divestment series is insignificant for NP.
Furthermore, price volatility reduced after the second series of divestments.

We do not find an absolute advantage of the structural remedy over the behavioral remedy
because the effect of market share on the SMP for PG is statistically significant after the second series
of divestments. This result could be related to the finding that, after the second series of divestments,
PG’s market share was larger than that of NP.

Even if the effect of market share on the SMP is statistically significant for PG after the second
series of divestments, we would still conclude that the structural remedy is more successful because,
during price-cap regulation, the effect of market share of both incumbent producers is statistically
significant and price volatility is higher. The regulatory office may also prefer a structural remedy
that does not involve monitoring costs, as in the case of the behavioral remedy. Moreover, structural
remedies in the form of a divestment series may make the market more competitive [34].

The England and Wales electricity market has served as a model for much of the electricity
industry restructuring worldwide [24]. The findings of this paper regarding the impact of behavioral
and structural remedies on electricity prices could therefore be of interest to other countries (e.g.,
Australia, Spain, and the U.S.) that have adopted similar trading arrangements.
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Abbreviations

The following abbreviations are used in this manuscript:

ACF Autocorrelation Function
ADF Augmented Dickey–Fuller
AR Autoregressive
ARCH Autoregressive Conditional Heteroscedasticity
BDS Brock–Dechert–Scheinkman
CDF Cumulative Distribution Function
Coef of Var Coefficient of Variation
FT Fourier Transform
GOAL Generator Ordering and Loading
i.i.d. independent and identically distributed
NGC National Grid Company
NP National Power
Obs Observations
PACF Partial Autocorrelation Function
PG PowerGen
SGED Skew Generalized Error Distribution
SIC Schwarz Information Criterion
SMP System Marginal Price
St Dev Standard Deviation

Appendix A. Tables

Table A1. ADF test for the SMP time series.

Null hypothesis: the SMP time series has a unit root
Exogenous: constant
Lag length: 13 (Automatic choice based on SIC)

ADF test statistic for the SMP time series −5.217

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root: 1% critical value = −3.432,
5% critical value = −2.862, and 10% critical value = −2.567.

Table A2. ADF test for the forecast demand time series.

Null hypothesis: the forecast demand time series has a unit root
Exogenous: constant
Lag length: 28 (Automatic choice based on SIC)

ADF test statistic for forecast demand time series −3.756

Note: MacKinnon critical values for the rejection of the hypothesis of a unit root: 1% critical value = −3.432,
5% critical value = −2.862, and 10% critical value = −2.567.

Table A3. Correlation of the SMP and the forecast demand with periodic functions.

Variables cos
( 2π

7 t
)

sin
( 2π

7 t
)

cos
( 4π

7 t
)

sin
( 4π

7 t
)

cos
( 6π

7 t
)

sin
( 6π

7 t
)

SMP −0.17 *** 0.14 *** −0.09 *** 0.10 *** −0.06 *** 0.02
Forecast demand −0.43 *** 0.20 *** −0.18 *** 0.19 *** −0.07 *** 0.06 ***

Note: *, **, and *** stand for the 10%, 5%, and 1% significance levels, respectively.
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Table A4. Summary statistics of the SMP during the peak-demand period.

SMP over Weekdays SMP over Weekends

Mean 39.41 30.32
Min 10.84 7.88
Max 211.24 92.66
St Dev 17.12 10.07
Obs 2283 913

Appendix B. Figures
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Figure A1. Correlogram for the SMP time series.
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Figure A2. Periodogram plots for the SMP and the forecast demand time series.
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Figure A3. Quarterly fuel prices for major power producers in Great Britain [2,42].

Appendix C. Testing Model Adequacy

The adequacy of the estimated model generally depends on the validity of assumptions made
prior to estimation. For the maximum likelihood estimation procedure applied in our research, we
assume that standardized residuals νt = εt/

√
ht are independent and identically distributed (i.i.d.)

and follow a skew generalized error distribution (SGED). These assumptions are tested and discussed
in Appendices C.1 and C.2, respectively. Finally, in Appendix C.3, using the sign bias test, we examine
if in the volatility process there are any asymmetric effects of positive and negative shocks left.

Appendix C.1. Testing the i.i.d. Assumption for the Standardized Residuals

We verify the i.i.d. assumption for the standardized residuals by using two approaches:
the Brock–Dechert–Scheinkman (BDS) test and the Ljung–Box Q-test [29,30]. These tests allow one to
determine whether there is any information left in standardized residuals ν̂t.

As summarized in Table A5, for different values of the embedding dimension m and a default
option of the proximity parameter ε, we do not reject the null hypothesis that ν̂t is i.i.d. time series.

Table A5. BDS test for ν̂t.

Dimension BDS Stat Std Err p-Value

2 −0.0006 0.0014 0.6798
3 −0.0004 0.0022 0.8411
4 −0.0001 0.0026 0.9802
5 −0.0005 0.0027 0.8598
6 −0.0007 0.0026 0.7897

Because the above conclusion is based on the parameters of m and ε, to check robustness, we
additionally use the Ljung–Box Q-test. The Q-test allows one to verify if ν̂t and ν̂2

t are serially correlated.
Serial correlation in ν̂t is interpreted as an autocorrelation problem in ν̂t and serial correlation in ν̂2

t is
interpreted as a heteroscedasticity problem in ν̂t. The results of the Ljung–Box Q-test for ν̂t and ν̂2

t are
presented in Table A6.
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Table A6. The Ljung–Box Q-test for ν̂t and ν̂2
t .

ν̂t ν̂2
tLag ACF PACF Q-Stat p-Value ACF PACF Q-Stat p-Value

1 −0.01 −0.01 0.44 0.51 −0.02 −0.02 0.94 0.33
5 0.03 0.03 6.77 0.24 0.00 0.00 1.49 0.91

10 −0.01 −0.01 8.17 0.61 0.03 0.03 7.83 0.65
50 0.01 0.01 41.18 0.81 0.01 0.00 47.12 0.59
100 −0.02 −0.01 106.40 0.31 0.04 0.04 98.69 0.52
200 −0.01 −0.01 198.74 0.51 0.00 0.01 189.73 0.69
300 0.01 0.01 316.63 0.24 0.00 0.02 297.89 0.52

As all p-values from the Ljung–Box Q-test are above 10%, we do not reject the null hypothesis
and conclude that time series ν̂t and ν̂2

t are not serially correlated.

Appendix C.2. Testing the Distributional Assumption for the Standardized Residuals

The distributional assumption for the standardized residuals is examined in three steps. In
the first step, we analyze descriptive statistics. We then use the Jarque–Bera normality test,
the Kolmogorov–Smirnov test, and the quantile–quantile plot in order to compare the empirical
distribution with normal distribution. Finally, in the third step, we test if the standardized residuals
follow an SGED (µ, σ, β, χ) using the goodness of fit test.

We find that the empirical distribution of standardized residuals ν̂t has excess kurtosis and heavy
tails (a kurtosis coefficient greater than 3 and a shape parameter less than 2). The empirical distribution
of ν̂t is also skewed to the right (a skewness coefficient greater than 0 and a skewness parameter greater
than 1). Based on standard errors of β̂ and χ̂ presented in Table 8, we also find that estimated shape
and skewness parameters are statistically different from 2 and 1, respectively. These findings are not in
line with normal or Student’s t distributions. The results are summarized in Table A7 and Figure A4.

Table A7. Descriptive statistics for standardized residuals ν̂t.

Mean (µ̂) −0.0233
Standard deviation (σ̂) 1.0022
Kurtosis coefficient 4.7464
Shape parameter (β̂) 1.4680
Skewness coefficient 0.2316
Skewness parameter (χ̂) 1.0542

The Jarque–Bera test allows one to test if the observed excess kurtosis and positive skewness of
standardized residuals ν̂t are jointly statistically significant in order to conclude that the empirical
distribution of standardized residuals ν̂t is different from normal distribution. The results of the
Jarque–Bera test presented in Table A8 suggest that the null hypothesis of normal distribution
be rejected.

Another way to test if data follow some theoretical distribution (not necessarily normal
distribution as was in Jarque–Bera test) is to apply the Kolmogorov–Smirnov test. The idea of this
test is based on comparing the differences in cumulative distribution functions (CDF) of empirical
and theoretical distributions. We compare the CDFs of empirical and normal distributions. Again
we reject the null hypothesis stating that the empirical distribution of standardized residuals ν̂t is
normal at the 5% significance level. In other words, the differences observed between the empirical
and normal distributions in Figure A4 are statistically significant. Following the density plots in
Figure A4, we suggest that the major reason for rejecting the null hypothesis could be related to excess
kurtosis (i.e., kurtosis coefficient greater than 3), heavy tails, and asymmetry observed in the empirical
distribution of standardized residuals.
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Indeed, when comparing the CDF of the empirical distribution of standardized residuals ν̂t and
normal CDF in Figure A4, we note some differences in tails. The quantile–quantile plot in Figure A5
illustrates more clearly observations in the tails located outside the 95% confidence interval when
comparing the empirical and normal distributions.
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Figure A4. The empirical and normal distributions of standardized residuals. (a) Density plots; (b)
CDF plots.

Table A8. Normality tests for standardized residuals ν̂t.

Jarque–Bera Test Kolmogorov–Smirnov Test
Jarque–Bera test statistic 384.946 Kolmogorov–Smirnov test statistic 0.0270
p-value 0 p-value 0.0319
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Figure A5. Quantile–quantile plot for standardized residuals.

The finding that the standardized residuals do not follow normal distribution may not necessarily
mean that the standardized residuals follow an SGED, even if the SGED nests a normal distribution as
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a special case. In order to test if the standardized residuals follow an SGED, we apply the goodness of
fit test.

In the goodness of fit test, an important parameter is the number of bins (i.e., groups and intervals).
Since there are several empirical rules as to how to set the number of bins, we consider four possibilities
for the number of bins. The test results in Table A9 suggest not rejecting the null hypothesis, stating
that the empirical distribution is the same as the theoretical distribution (i.e., the SGED in our case).

Table A9. Pearson goodness of fit test.

Group χ2-Stat p-Value

20 25.28 0.15
30 33.42 0.26
40 48.50 0.14
50 54.24 0.28

These test results, therefore, support the application of an SGED. This distribution coincides with
the normal distribution when the shape parameter is two (i.e., the kurtosis coefficient is three) and the
skewness parameter is one (i.e., the skewness coefficient is zero), as illustrated in Figure 2b.

Appendix C.3. Testing Model Specification

The asymmetry of the positive and negative shock effects on volatility was addressed in our
methodology following the approach in [37] by introducing parameter γi in the volatility equation.
The presence of remaining asymmetries in the effect of positive and negative shocks on volatility
would indicate that the model is misspecified. Hence, we use the sign bias test developed in [32] in
order to test the null hypothesis, stating that the conditional volatility model is correctly specified.

Table A10. Sign bias test.

t-Test p-Value

Sign bias 0.25 0.81
Negative sign bias 0.20 0.84
Positive sign bias 0.87 0.38
Joint effect 0.82 0.84

The test results indicate not rejecting the null hypothesis since all p-values are above 10%.
This conclusion suggests that our conditional volatility model has been correctly specified.
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