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1. INTRODUCTION

Many infinite horizon, discrete time, deterministic oligopoly models involve physical

links between periods, i.e., they are oligopolistic difference games. These links can stem,

for example, from investment or advertising. In difference games, a current state, which

is payoff relevant, should be taken into account by rational players when deciding on a

current period action. If strategies depend only on a current payoff relevant state and not

on which history led to it, they are called Markov. Application of the requirement of

subgame perfection to Markov strategies forming a Nash equilibrium leads to the solution

concept of a Markov perfect equilibrium. In many oligopolistic infinite horizon difference

games (the unique) Markov perfect equilibrium is non-collusive. (See [6] for a typical

example. Maskin and Tirole’s model of a dynamic Bertrand duopoly [7] is a notable

exception.)

In the present paper we analyze Markov perfect equilibria in an infinite horizon,

discrete time, dynamic duopoly, composed of price setting firms, discounting future profits,

producing differentiated products, with sales constrained by capacities. In order to maintain

next period capacities on their current level or to increase them, current period investments

are needed. Thus, current capacities are payoff relevant state variables. We impose an

additional requirement on firms’ strategies: they should be continuous in their arguments. In

a Markov setting it means that each firm’s current period investment into capacity and price

charged is a continuous function of a current period capacity vector. Nevertheless, an

equilibrium strategy profile has to be immune against every possible unilateral deviation

to any closed loop strategy.

The requirement of continuity of strategies was introduced into the analysis of infinite
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horizon games with discounting of payoffs by J. W. Friedman and L. Samuelson ([2], [3]).

It is based on the view that punishments should "fit the crime." Two main arguments in

favour of continuous strategies are [3]: they are more appealing to real human players than

a Draconian punishment after a very small deviation; following a deviation, the convergence

of continuous strategies to the original action profile (or, in a Markov setting, to the limit of

the original sequence of action profiles) reflects an intuitively appealing rebuilding of trust.

We think that in the case of oligopolistic infinite horizon games there is an additional, policy

related, argument: since collusive behaviour can be viewed as a violation of antitrust laws,

continuous strategies reduce the risk of attracting attention of an agency responsible for

protection of competition.

Continuous Markov strategies have the plausible property that large changes in payoff

relevant variables have large effects on current actions, minor changes in payoff relevant

variables have minor effects on current actions, and changes in variables that are not payoff

relevant have no effect on current actions. This is an improvement in comparison with

Markov strategies without the requirement of continuity for which there is only the distinction

between effect and no effect according to whether a variable that has changed is payoff

relevant or not, so that minor changes in payoff relevant variables can have large effects on

current actions. (See the discussion of minor causes and minor effects in [8]). It is an

improvement also in comparison with continuous strategies without the Markov property,

which allow changes in variables that are not payoff relevant to effect current actions.

The requirement that strategies be Markov is an application of Harsanyi’s and

Selten’s [4] principle of invariance of (selected) equilibrium strategies with respect to

isomorphism of games. (This fact is pointed out by Maskin and Tirole [8].) The latter

principle requires that strategically equivalent games have identical solution (i.e., selected



4

equilibrium or subset of equilibria). Applying it to a subgame perfect equilibrium of the

analyzed difference game, it implies that any element of selected subset of equilibrium

strategy profiles should prescribe the same play in all subgames that are strategically

equivalent, i.e., in all subgames with the same initial state. The requirement of continuity of

strategies is a strengthening of this principle. When two subgames are, from the strategic

point of view, "close", i.e., an initial state of one of them is in a neighbourhood of an initial

state of the other, a sequence of vectors of actions prescribed for the former should be in

a neighbourhood (on the element-wise basis) of a sequence of vectors of actions prescribed

for the latter. (More precisely: Consider two subgames with initial states, i.e. capacity

vectors, y∈ Y and y’ ∈ Y. Let the sequences of actions profiles that an equilibrium strategy

profile prescribes in them if neither firm deviates be {(ρ1
k, η1

k, ρ2
k, η2

k)} k
∞

=1 and {(ρ1’
k, η1’

k, ρ2’
k,

η2’
k)} k

∞
=1, where, for each positive integer k,ρ1

k, ρ2
k, ρ1’

k, ρ2’
k are prices andη1

k, η2
k, η1’

k, η2’
k are

investment expenditures. Then, for each k∈ {1, 2, ...}, (ρ1
k, η1

k, ρ2
k, η2

k) converges to (ρ1’
k,

η1’
k, ρ2’

k, η2’
k) as y converges to y’.)

Restriction of attention to Markov perfect equilibria imposes three limitations on

equilibrium strategies. First, counting of repetitions of a certain action vector is impossible.

Therefore, after a profitable deviation (i.e., a deviation that, if the other firm ignored it,

would increase a deviator’s continuation average discounted net profit) the play has to pass

(in general) through different action vectors lying on a punishment path before reaching a

collusive action profile. Second, an action vector prescribed (by an equilibrium strategy

profile) for the first period must be the same as an action vector prescribed when the initial

state reappears after a deviation. Thus, even at the beginning of the game a collusive action

vector can be only gradually approached (unless the initial state cannot result from a

profitable unilateral deviation from any continuation equilibrium and does not lie on a



5

punishment path). Third, the punishment path must be the same for both firms. Otherwise,

if there were two different punishment paths, after some (unilateral) deviations from them

it would be impossible to determine, only on the basis of a current capacity vector, from

which of them a deviation took place. Adding the requirement of continuity of strategies

leads to the fourth limitation. After a deviation as well as at the beginning of the game, the

play can (in general) only converge to a collusive action vector, without reaching it in any

finite time.

In equilibrium firms charge prices given by a capacity constrained Bertrand

equilibrium. The reason for this is that a deviation in a price (when a capacity vector is

consistent with the play prescribed by an equilibrium strategy profile) cannot be punished,

because strategies depend only on capacities. Therefore, what matters most in any subgame,

is an initial capacity vector and a sequence of investments by both firms, determining a

sequence of capacity vectors, i.e., a "reduced Cournot form" of a subgame. This is a typical

feature of models of oligopoly with capacity constrained price setters, first pointed out (in the

framework of two-stage homogeneous good duopoly model) by Kreps and Scheinkman [5].

For discount factors close to one, the analyzed dynamic duopoly game has a

multiplicity (indeed, a continuum) of continuous strategy Markov perfect equilibria. The

reason for this is that, unlike in Maskin and Tirole’s [6] model of a dynamic Cournot

duopoly, in every period there is a (nontrivial) payoff relevant state variable for each firm.

This makes detection of a unilateral deviation possible (although identification of a deviator

and an action vector from which a deviation took place is not possible).

Multiplicity of equilibria raises the issue of reduction of the set of them. We

approach the latter on the basis of the weakest possible concept of a renegotiation-proofness,
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which we call renegotiation-quasi-proofness. A continuous strategy Markov perfect

equilibrium s0 is renegotiation-quasi-proof if there does not exist another continuous strategy

Markov perfect equilibrium s such that renegotiation from s0 to s makes both firms better

off (i.e., increases their continuation average discounted net profit) in every subgame. (Since

this is really a weak concept, we do not find it appropriate to call it simply "renegotiation-

proofness." On the other hand, we cannot call it "weak renegotiation-proofness" because the

latter name was used by Farrell and Maskin [1] for a different concept.) For discount factors

close to one this concept is similar to the definition of a renegotiation-proofness used in

Maskin’s and Tirole’s [7] paper on dynamic Bertrand duopoly. In their model a

renegotiation is based on a change of the price vector that is, after a finite number of

periods, infinitely repeated in every subgame. (A renegotiation away from an Edgeworth

cycle is a switching to a collusive strategy profile prescribing, after a finite number of

periods, an infinite repetition of a certain price vector.) In our case a renegotiation is based

on a change of the capacity and the price vector to which the play in every subgame

converges.

The set of strategy profiles to which firms are allowed to renegotiate is restricted here.

We confine attention to renegotiation to other continuous strategy Markov perfect equilibria.

This is natural. Since we assume (for reasons explained above) that firms will coordinate

on an equilibrium of this type, there is no reason to assume that they will renegotiate to

another equilibrium that is not of this type. Application of the criterion of renegotiation-

quasi-proofness eliminates all (continuous strategy Markov perfect) equilibria in which some

continuation equilibrium path (in the capacity space) does not converge to a Pareto efficient

capacity vector giving both firms no lower single period net profit than they earn in some (but

the same for both firms) capacity unconstrained Bertrand equilibrium. (Pareto efficiency of
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a capacity vector is defined here with respect to a profit vector resulting from selling outputs

equal to capacities at prices determined by an inverse demand function and incurring costs

of maintaining current capacities. See the following section for technical details.) Then we

make an additional assumption that, for each capacity unconstrained Bertrand equilibrium,

there is some neighbourhood of the vector of demands at it (in the capacity space) in which

a capacity constrained Bertrand equilibrium is unique. Under this additional assumption, we

show that for each Pareto efficient capacity vector y*, giving both firms single period gross

profit that is no lower than their single period gross profit in the capacity unconstrained

Bertrand equilibrium (which is unique under the above additional assumption), there exists

a renegotiation-quasi-proof continuous strategy Markov perfect equilibrium in which all

continuation equilibrium paths (in the capacity space) converge to y*. Thus, we obtain a

characterization of the set of equilibria.

The paper is organized as follows. In the next section we formally describe the

analyzed dynamic duopoly. In Section 3 we prove necessary conditions of the existence of

a renegotiation-quasi-proof continuous strategy Markov perfect equilibrium of the analyzed

duopolistic game. In Section 4 we prove sufficient conditions of its existence. Section 5

concludes.

2. THE DYNAMIC DUOPOLY

In this section we specify assumptions on the analyzed duopolistic industry and give

definitions of game theoretic solution concepts that we use.

Assumption1. The analyzed dynamic duopoly is composed of two firms, indexed by
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subscripts 1 and 2, each of them producing in every period t∈ {1, 2, ...} a single non-

durable product differentiated from the product of the competitor. The two products are

gross substitutes. Buyers will not become biased towards one of the firms.

Assumption2. Output of each firm in every period is constrained by its capacity in

that period. The set of all feasible capacities of firm i∈ {1, 2} is Y i = [0, y i
max], y i

max > 0.

We set ymax = (y1
max, y2

max). Y = Y1 x Y2 is the capacity space, identified with the state

space, and y(t) = (y1(t), y2(t)) ∈ Y is a capacity (state) vector in period t. The initial

capacity vector y(1)∈ Y is given. Capacity is increased or (fully or partially) maintained

by capacity creating investments. We denote firm i’s capacity creating investment

expenditures in period t by ki(t). The set of all feasible investment expenditures of firm i

is Ki = [0, k i
max], where ki

max is the investment expenditure needed to increase capacity from

0 to yi
max. (Such an increase in one period need not be economically sound. If it is not

economically sound, this only confirms that firm i will not incur investment expenditures

exceeding ki
max.) The (minimum) investment expenditures needed to achieve capacity yi(t+1)

when the current capacity is yi(t) areαi(yi(t), yi(t+1)), whereαi:{(y i(t), yi(t+1)) ∈ Y i
2 yi(t+1)

≥ γiyi(t)} → [0, k i
max] is firm i’s investment function (γi is defined below).

Assumption3. For each i∈ {1, 2}, αi is strictly increasing in its second argument,

strictly decreasing in its first argument, and continuously differentiable in each argument

(with left or right hand side derivatives at boundary of its domain) on its domain.

Assumption4. For every i∈ {1, 2}, each yi(t) ∈ Yi, and every ki(t) ∈ Ki the function

αi(yi(t), yi(t+1)) is continuously invertible with respect to yi(t+1) and the inverseα i
−1(yi(t),
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ki(t)) reflects the upper bound on firm i’s capacity, i.e.,α i
−1(yi(t), ki(t)) ≤ y i

max.

We setα−1(y(t), (k1(t), k2(t))) = (α1
−1(y1(t), k1(t)), α2

−1(y2(t), k2(t))).

Assumption5. For each i∈ {1, 2}, there isδi ∈ (0, 1) such that

αi(yi, yi) = δiyi, ∀ yi ∈ Yi, i ∈ {1, 2}, (1)

i.e., δi is a depreciation rate.

Assumption6. For each i∈ {1, 2}, there is γi ∈ (0, 1) such thatαi(yi(t), γiyi(t)) =

0 for all yi(t) ∈ Yi.

Assumptions 3-6 are satisfied for investment functions usually employed in the

literature, like linear investment function, or (if y1(1) > 0 and y2(1) > 0) Prescott’s [9]

investment function.

Let Qi be the set of all feasible outputs of firm i and set Q = Q1 x Q2. Since outputs

are constrained by capacities, we have Qi = [0, y i
max], i ∈ {1, 2}.

Assumption7. For i ∈ {1, 2}, firm i’s costs of producing output qi ∈ Qi are ciqi,

where ci > 0.

In each period t∈ {1, 2, ...}, firm i ∈ {1, 2} charges price pi(t) ∈ Pi = [ci, pi
max] and

incurs investment costs ki(t). (The prices pi
max are defined below.) Thus, firm i’s action

vector in period t is (pi(t), ki(t)) and its action space is Pi x Ki. We set P = P1 x P2 and p(t)

= (p1(t), p2(t)). Firm i discounts future revenues and costs by discount factorβi ∈ (0, 1) and

we let β = (β1, β2).

For i ∈ {1, 2}, Z i:P x Y → Qi is firm i’s capacity constrained demand function. We
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view the vector function Z(p, y) = (Z1(p, y), Z2(p, y)) as a primitive of the model.

Assumption8. For each i∈ {1, 2}, Z i(p, y) ∈ [0, yi] and it is continuous in (p, y)

on its domain. For every (p, y) from the closure of P+ x Y+, the subset of P x Y on which

0 < Zk(p, y) < yk for both k ∈ {1, 2}, Z i(p, y) is strictly decreasing and concave in pi,

strictly increasing and concave in pj, j ≠ i, twice continuously differentiable with respect to

p1 and p2 (with right or left hand side derivatives at boundaries of the closure of P+ x Y+),

mixed second partial derivative is non-positive, and∂Zi(p, y)/∂pi > ∂Zi(p, y)/∂pj, j ≠ i.

Assumption9. Zi(p, ymax) < y i
max for both i ∈ {1, 2} and every p∈ P.

Let Di:P → Qi be the (capacity unconstrained) demand function of firm i∈ {1, 2},

i.e., D(p) = (D1(p), D2(p)) = Z(p, ymax).

Assumption10. For each i∈ {1, 2}, every p ∈ P, and each y∈ Y for which Di(p)

> Zi(p, y), ∂Zi(p, y)/∂pi = 0. (An infinitesimal change of a price changes the capacity

unconstrained demand only infinitesimally, so the capacity constraint remains binding).

The prices p1
max and p2

max are the lowest prices satisfying D1(p1
max, p2

max) = D2(p1
max, p2

max)

= 0.

Since we restrict attention to Markov strategies, in equilibrium, for any vector of

capacities, prices charged by the firms are equal to capacity constrained Bertrand

equilibrium prices, at which capacity constrained demands equal capacity unconstrained ones

(see the proof of Lemma 1 in Section 3 for details).

Assumption 8 implies that the inverse vector demand function D−1:Q → [0, p1
max] x
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[0, p2
max], continuous in q, exists for each strictly positive q∈ Q. For any other q∈ Q, we

set D−1(q) equal to the limit of the sequence {D−1(qn)} n
∞

=1 for the sequence {qn} n
∞

=1 of strictly

positive elements of Q converging to q. Taking into account Assumption 8, for each i∈ {1,

2}, D i
−1(q) is twice continuously differentiable with respect to q1 and q2, strictly decreasing

and concave in both q1 and q2, and mixed second partial derivative is non-positive at each

q ∈ Q with Di
−1(q) > 0 (with left or right hand side derivatives at boundaries of Q).

Assumption11. For i ∈ {1, 2}, D i(ci, cj) > 0,

if D 2
−1(0, y2) > c2, then D1

−1(0, y2) - c1 - δ1 > 0, (2a)

and

if D 1
−1(y1, 0) > c1, then D2

−1(y1, 0) - c2 - δ2 > 0. (2b)

Assumption12. Binding agreements between the firms are not possible.

The conditions (2a)-(2b) ensure that no firm can eliminate the other firm from the

market. In other words, each firm, if it was originally a monopolist, would have to

accommodate an entry of the other. Therefore, no firm can avoid an infinite horizon

strategic interaction with the other.

Firm i’s gross (of investment expenditures) profit in period t is

πi[p(t), y(t)] = (pi(t) - ci)Zi[p(t), y(t)], i ∈ {1, 2}, (3)

and its net profit in period t isπi[p(t), y(t)] - ki(t). We setπ[p(t), y(t)] = (π1[p(t), y(t)],

π2[p(t), y(t)]).

In the following text we refer to this dynamic duopoly as "GDD" or "the game GDD."

Assumption13. For each firm, average discounted net profit is its payoff function in
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GDD.

We say that a capacity vector y+ ∈ Y is Pareto efficient if the net profit vector

π[D−1(y+), y+] - (δ1y1
+, δ2y2

+) is Pareto efficient with respect to the set {π[D−1(y), y] - (δ1y1,

δ2y2) y ∈ Y}. In other words, a capacity vector y+ is Pareto efficient if there is no other

feasible capacity vector y such that an infinite repetition of y and a price vector D−1(y)

increases, in comparison with the infinite repetition of y+ and the price vector D−1(y+),

average discounted net profit of both firms. (The last sentence expresses the criterion of weak

Pareto efficiency, but in this case weak and strict Pareto efficiency coincide.) This

interpretation of Pareto efficiency of a capacity vector plays important role in the arguments

in the following sections.

A Markov strategy of firm i, si, is a function that assigns to each feasible state a price

charged and an investment expenditures incurred by firm i, i.e., si:Y → Pi x Ki. Thus, a

Markov strategy is a special case of a closed loop strategy. (We restrict here attention to pure

strategies. We think that allowing for randomization between investment expenditures would

not improve realism of the model. Since a pure strategy capacity constrained Bertrand

equilibrium exists for all feasible capacity vectors, randomization between prices is not

needed.) For each i∈ {1, 2}, the function ρi:Y → Pi defines the first component and the

functionηi:Y → Ki the second component of the vector function si. That is, si = (ρi, ηi). We

let ρ = (ρ1, ρ2) andη = (η1, η2). The set of all Markov strategies of firm i is denoted by

Si. We set S = S1 x S2 and s = (s1, s2) ∈ S.

Average discounted net profit of firm i in a subgame with an initial state y, when

firms follow a Markov strategy profile s, is

∞
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Πi(s, y) = (1 -βi) ∑βi
t-1{ πi[ρ(y(t)), y(t)]

t=1

- ηi[y(t)]}, i ∈ {1, 2}, (4)

where y(1) = y and yi(t+1) = α i
−1[yi(t), ηi(y(t))] for each i∈ {1, 2} and every positive integer

t. (Without loss of generality, we can number the first period of a subgame by one.) We set

Π(s, y) = (Π1(s, y), Π2(s, y)).

A Markov perfect equilibrium of GDD is a profile of Markov strategies that yields a

Nash equilibrium in every subgame of GDD. The following definition expresses this

formally.

DEFINITION 1. A profile of Markov strategies s∈ S is a Markov perfect equilibrium

of GDD if, for every state y∈ Y, for each firm i ∈ {1, 2}, for j ∈ {1, 2}\{i}, and for every

strategy si’ ∈ Si, Πi(s, y) ≥ Πi((si’, sj), y).

If one of the firms uses Markov strategy then there is a best response of the other

firm against it (chosen from the whole set of its closed loop strategies) that is also a Markov

strategy. Therefore, a Markov perfect equilibrium is still a subgame perfect equilibrium when

the Markov restriction is not imposed.

Firm i’s Markov strategy si is continuous if it is a continuous function from Y to Pi x Ki.

The set of all continuous Markov strategies of firm i is denoted by Si
* and we let S* = S1

*

x S2
*.

A continuous strategy Markov perfect equilibrium of GDD is a profile of continuous

Markov strategies that yields a Nash equilibrium in every subgame of GDD. For the sake

of completeness we state the following formal definition.
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DEFINITION 2. A profile of continuous Markov strategies s∈ S* is a continuous

strategy Markov perfect equilibrium of GDD if, for every state y∈ Y, for each firm i ∈ {1,

2}, for j ∈ {1, 2}\{i}, and for every strategy si’ ∈ Si, Πi(s, y) ≥ Πi((si’, sj), y).

Note that here we (have to) require explicitly that a continuous strategy Markov

perfect equilibrium is immune to all unilateral deviations to a Markov strategy that is not

continuous.

We conclude this section by the definition of the concept of a renegotiation-quasi-

proof continuous strategy Markov perfect equilibrium.

DEFINITION 3. A continuous strategy Markov perfect equilibrium s0 ∈ S* of GDD is

renegotiation-quasi-proof if there does not exist a continuous strategy Markov perfect

equilibrium s∈ S* of GDD such thatΠi(s, y) > Πi(s
0, y) for both i ∈ {1, 2} and for every

y ∈ Y.

That is, s0 ∈ S* is renegotiation-quasi-proof if there is no continuous strategy Markov

perfect equilibrium s∈ S* such that, by jointly switching from s0 to s, both firms increase

their average discounted net profit in every subgame of GDD. As it is usual in the literature

on renegotiation-proofness (e.g. [1], [7]), the set of strategy profiles to which firms are

allowed to renegotiate is restricted here. Since we assume (for reasons explained in the

Introduction) that firms will coordinate on a continuous strategy Markov perfect equilibrium,

there is no reason to assume that they will renegotiate to an equilibrium that is not of this

type. The use of weak rather than strict Pareto efficiency in Definition 3 is also in line with

the bulk of the literature on renegotiation-proofness. (Nevertheless, our results would still
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hold if we used strict Pareto efficiency.)

The concept of a renegotiation-quasi-proofness used here is the weakest possible

notion of a renegotiation-proofness. A renegotiation increasing average discounted net profit

of both firms in every subgame is the most tempting of all imaginable renegotiation

opportunities. If it is possible then we can hardly expect that firms will stick to the original

equilibrium. Nevertheless, this weak concept is strong enough to ensure that all continuation

equilibrium paths (in the capacity space) converge to a Pareto efficient capacity vector.

Moreover, the use of a stronger concept of renegotiation-proofness would not strengthen our

results.

Since the concept of a renegotiation-proofness that we use is so weak we do not find

it appropriate to call it simply "renegotiation-proofness." Nor we can use the term "weak

renegotiation-proofness" because the latter was already coined by Farrell and Maskin [1] for

a different concept. Therefore we use (somewhat unwieldy) term "renegotiation-quasi-

proofness."

For discount factors close to one the concept of a renegotiation-quasi-proofness is

similar to the concept of renegotiation-proofness in Maskin’s and Tirole’s [7] paper on

dynamic Bertrand duopoly. In their model a renegotiation is based on a change of the price

vector that is, after a finite number of periods, infinitely repeated in every subgame. (A

renegotiation away from an Edgeworth cycle is a switching to a collusive strategy profile

prescribing, after a finite number of periods, an infinite repetition of a certain price vector.)

In our case a renegotiation is based on a change of the capacity and price vectors to which

the play in every subgame converges.
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3. NECESSARY CONDITIONS

In this section we give necessary conditions (in Proposition 1) of the existence of

a renegotiation-quasi-proof continuous strategy Markov perfect equilibrium of GDD. We show

that, in each renegotiation-quasi-proof continuous strategy Markov perfect equilibrium, all

continuation equilibrium paths (in the capacity space) converge to a Pareto efficient capacity

vector. We specify also other requirements that a limit of all continuation equilibrium paths

(in the capacity space) of a renegotiation-quasi-proof continuous strategy Markov perfect

equilibrium must satisfy.

As already noted in the Introduction, at each state prices charged form a capacity

constrained Bertrand equilibrium. Therefore we first define the latter concept and give (in

Lemma 1) some of its properties.

For each i∈ {1, 2} the function ζi:Qj → Qi, j ≠ i, is firm i’s Cournot reaction

function, i.e.,ζi(qj) = argmax{(Di
−1(qi, qj) - ci)qi qi ∈ Qi}. Assumptions 7, 8, 9, and 11

imply that, for both i∈ {1, 2}, a function ζi is well defined, strictly decreasing, andζi(qj)

∈ (0, yi
max) for each qj ∈ Qj such that Dj

−1(qj, 0) > cj.

For any y∈ Y, a capacity constrained Bertrand equilibrium pB(y) is a price vector that

is a pure strategy Nash equilibrium of the one shot duopoly game GD’(y) with the space of

feasible strategy profiles equal to P and profits (pi - ci)Zi(p, y), i ∈ {1, 2}, as payoff

functions. We use the term "unconstrained Bertrand equilibrium" to refer to a standard

concept of Bertrand equilibrium, i.e., to a pure strategy Nash equilibrium of the game

GD’(y
max). (Assumption 9 implies that, for both i∈ {1, 2}, firm i’s output in any capacity

unconstrained Bertrand equilibrium is lower than yi
max. Also, for each pB(ymax), Di[p

B(ymax)]

< y i
max for both i ∈ {1, 2}, so every pB(ymax) is a capacity unconstrained Bertrand
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equilibrium.) The symbol PB denotes the correspondence PB:Y → P, which assigns to each

capacity vector y∈ Y the set of capacity constrained Bertrand equilibria (i.e., the set of Nash

equilibria of GD’(y) in pure strategies). The properties of a capacity constrained Bertrand

equilibrium needed for our arguments are given by the following lemma.

LEMMA 1. (a) PB(y) is nonempty for each y∈ Y.

(b) The correspondence P is upper hemicontinuous at each y∈ Y.

(c) Di[p
B(y)] ∈ [min{yi, ζi(Dj(p

B(y)))}, yi] for every y∈ Y, every pB(y) ∈ PB(y), each i∈ {1,

2}, and j ∈ {1, 2}\{i}.

(d) If, at some y∈ Y, yi ≤ ζi(yj), j ≠ i, for both i ∈ {1, 2}, then PB(y) is a singleton and

its only element is pB(y) = D−1(y).

(e) For every y∈ Y, for which pB(y) ∈ PB(y) satisfying Di[p
B(y)] = y i for both i ∈ {1, 2}

exists, PB(y) is a singleton.

(f) If, for some y∈ Y and pB(y) ∈ PB(y),

then pB(y) ∈ PB(ymax).

(g) If y’ ∈ Y, y’’ ∈ Y, D−1(y’) ∈ PB(y’), D−1(y’’) ∈ PB(y’’), and yi’ ≤ yi’’ for both i ∈ {1, 2}

with at least one of these inequalities strict, then, for any y∈ [y’,y’’], P B(y) = {D−1(y)}.

Moreover, for each y∈ [y’, y’’]\{y’’}, D −1(y) satisfies

Proof. (a) The existence follows from the fact that strategy spaces are non-empty,
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compact, and convex intervals and payoff functions are continuous in strategy profiles and

quasiconcave in firms’ own strategies on P. (Each firm’s payoff function is strictly concave

in its own price at every p∈ P such that (p, y)∈ P+ x Y+. This implies quasiconcavity in

firm’s own price on whole P.)

(b) For every y∈ Y, each pB(y) ∈ PB(y) satisfies, for both i∈ {1, 2}, p i
B(y) > ci,

Di[p
B(y)] > 0 (because Di(ci, cj) > 0), Di[p

B(y)] ≤ yi (because otherwise firm i could increase

its price without decreasing a capacity constrained demand for its product), pi
B(y) < pi

max

(because Di(p1
max, p2

max) = 0), and first order conditions (which are both necessary and sufficient

for pB(y) being a capacity constrained Bertrand equilibrium)

and

Consider a sequence {yn} n
∞

=1 ∈ Y∞ converging to y’∈ Y and a sequence {pBn} n
∞

=1 ∈ P∞

converging to pB’ ∈ P, with pBn ∈ PB(yn) for each finite positive integer n. Each pBn must

satisfy conditions (7a)-(7b). Since left hand sides of both of them are continuous in (yn, pBn),

(7a) is in the form of weak inequality and (7b) in the form of equality, they must be satisfied

also at (pB’, y’).
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(c) If, for some i ∈ {1, 2} and j ∈ {1, 2}\{i}, we had D i[p
B(y)] < min{y i,

ζi[Dj(p
B(y))]} then, for arbitrarily smallε > 0, firm i’s upward deviation in output to Di[p

B(y)]

+ ε in a Cournot setting would increase its profit. Firm i’s downward deviation in price in

a Bertrand setting to pi’ satisfying Di(pi’, p j
B(y)) = Di[p

B(y)] + ε would give it higher profit than

the Cournot deviation to Di[p
B(y)] + ε, because Dj(pi’, p j

B(y)) < Dj[p
B(y)], which implies that

pi’ > D i
−1[Di(p

B(y)) + ε, Dj(p
B(y))]. Therefore, we must have Di[p

B(y)] ≥ min{y i, ζi[Dj(p
B(y))]}.

The upper bound on Di[p
B(y)] is obvious.

(d) The claim follows straightforwardly from part (c) of this lemma and the fact that,

for both i ∈ {1, 2}, ζi is strictly decreasing in yj, j ≠ i, at each yj ∈ Yj with Dj
−1(yj, 0) > cj.

(e) Suppose that PB(y) has at least two elements and let pB’(y) ∈ PB(y)\{pB(y)}. Then

there is i∈ {1, 2} with D i[p
B’(y)] < y i. This implies that pj

B’(y) > p j
B(y) = Dj

−1(y) for both j

∈ {1, 2}. Nevertheless, then (with respect to Assumption 8 and its implications for

derivatives of capacity unconstrained demand functions) for firm i the left hand side of (7a)

is strictly negative and the left hand side of (7b) is strictly positive, which is a violation of

first order conditions for capacity constrained Bertrand equilibrium. Thus, PB(y) = {D −1(y)}.

(f) The claim follows from the fact that the conditions (5) are sufficient for pB(y) ∈

PB(ymax). (g) Both D−1(y’) and D−1(y’’) must satisfy (7a). Moving along the line segment

[y’, y’’], both coordinates of D−1(y) are strictly decreasing, which implies that the right hand

side of (7a) is strictly increasing for both firms. This and the fact that (7a) holds for both

firms at D−1(y’’) imply that (7a) must hold for both firms at D−1(y) at any y from the interior

of [y’, y’’], as well as the last claim of this part of the lemma. For every y∈ [y’, y’’],

D−1(y) satisfies (7b). Therefore, D−1(y) ∈ PB(y) for each y∈ [y, y’’]. Uniqueness follows

from part (e) of this lemma.
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The following Proposition establishes, for the case of both discount factors close to

one, several properties of a renegotiation-quasi-proof continuous strategy Markov perfect

equilibrium. It shows that all continuation equilibrium paths in the capacity space converge

to the same (but, in general, different for different renegotiation-quasi-proof continuous

strategy Markov perfect equilibria) capacity vector. It gives lower bounds on equilibrium

average discounted net profits. Finally, it states restrictions on the shape of continuation

equilibrium paths.

PROPOSITION1. There exists a vector of discount factorsβ0 ∈ (0, 1)2 such that for

all β ∈ (β1
0, 1) x (β2

0, 1) the following property holds: Let s* be a renegotiation-quasi-proof

continuous strategy Markov perfect equilibrium of GDD. Then:

(a) All its continuation equilibrium paths in the capacity space converge to a capacity vector

y* that is Pareto efficient.

(b) There exists pB(ymax) ∈ PB(ymax) such that

πi[D
−1(y*), y*] - δiyi

* ≥ πi[p
B(ymax), D(pB(ymax))]

- δiDi[p
B(ymax)], i ∈ {1, 2}, (8)

and

Πi(s
*, y(1)) ≥ πi[p

B(ymax), D(pB(ymax))]

- δiDi[p
B(ymax)], i ∈ {1, 2}. (9)

(c) In each continuation equilibrium, the relation between the two firm’s capacities in some

small right hand side neighbourhood O(y1
*) of y1

* can be described by a strictly increasing

continuous function f:O(y1
*) → Y2. The functions [D1

−1(y1, f(y1)) - c1 - δ1]y1 and [D2
−1(y1, f(y1)) -

c2 - δ2]f(y1) (whose domain is O(y1
*)) are strictly decreasing at y1

*.
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Proof. (a) Let Θ be the union of all continuation equilibrium paths in the capacity

space (i.e.,Θ ⊂ Y) with the following property: After a unilateral deviation from any y∈

Θ, s* prescribes a movement back along a continuation equilibrium path from which a

deviation took place. (If a unilateral deviation from y∈ Y cannot be punished without an

increase in capacity of the firm that did not deviate, then y∈ Θ. This implies thatΘ ≠ ∅.)

Denote by cl(Θ) the closure ofΘ. The set cl(Θ) must be a single connected compact curve

in Y, not containing loops. If it was a union of two or more disjoint connected curves in

Y (or if it contained a loop), it would not be possible to determine, only on the basis of a

current state, from which of them (or from which part of the loop) a unilateral deviation took

place. (Thus, an action profile prescribed by an equilibrium strategy profile would not

depend on the state from which a unilateral deviation took place.) Therefore, for at least one

of the connected subsets of cl(Θ) (or for at least one part of the loop), the set of states from

which the play switches to it would have to be open, which would contradict continuity of

strategies. The claim that cl(Θ) must be connected follows from continuity of strategies.

The fact that cl(Θ) is a single connected compact curve in Y implies that all continuation

equilibrium paths in Y must converge to the same capacity vector. Denote it by y*.

If y * was not Pareto efficient then, for discount factors less than but close enough to

one, average discounted net profit of both firms in every subgame could be increased by

replacing the limit capacity vector by a capacity vector in its neighbourhood strictly Pareto

dominating it. (Pareto efficiency of the limit capacity vector implies that at any capacity

vector y’ from a small neighbourhood of the latter the condition of part (d) of Lemma 1

is satisfied, so at y’ the price vector prescribed by an equilibrium strategy profile, which must

be a capacity constrained Bertrand equilibrium, is D−1(y’).)

(b) Denote the other (than y*) end point of the curve cl(Θ) by y0. When βi
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approaches one, firm i’s continuation equilibrium average discounted net profit in any

subgame approaches the left hand side of (8). (Pareto efficiency of y* and part (d) of

Lemma 1 imply that PB(y*) = {D −1(y*)}.) A unilateral deviation by firm i at state y0 must be

punished without an increase in capacity of firm j≠ i. (It follows from the definition ofΘ.)

For the sake of an argument leading to a proof of this part of Proposition 1, we can assume

that there is a firm k∈ {1, 2} for which at ρ(y0) (i.e., at a capacity constrained Bertrand

equilibrium prescribed by s* at y0) (7a) holds as equality. (If it is not the case we can prolong

cl(Θ) by adding a line segment with a strictly positive slope to it. An argument similar to

the one in the proof of part (g) of Lemma 1 shows that for some length of an added line

segment we reach a new y0 at which, for some k∈ {1, 2}, ρ(y0) satisfies (7a) as equality.)

For firm i ≠ k, whenβi approaches one, its average discounted net profit from a permanent

deviation at the state y0 (starting at the state y0) would approach a number no lower than

min{πi[p
B(y i

max, yj
0), D(pB(y i

max, yj
0))] - δiDi[p

B(y i
max, yj

0)]

pB(y i
max, yj

0) ∈ PB(y i
max, yj

0), j ≠ i}. (10)

There is pB’ ∈ PB(ymax) with Di(p
B’) ≥ yi

0 such that the expression (10) is no lower than

πi[p
B’, D(pB’)] - δiDi(p

B’). If (8) did not hold for this pB’ and firm i, for βi close enough to

one firm i could increase its continuation average discounted net profit (in comparison with

its continuation equilibrium average discounted net profit) in a subgame of GDD with the

initial state y0 by a permanent unilateral deviation. If (9) did not hold for that pB’ and firm

i, firm i could increase, forβi close enough to one, its average discounted net profit in the

whole game aboveΠi(s
*, y(1)).

For firm k, when βk approaches one, its average discounted net profit from a

permanent (upward or downward) deviation in capacity at the state y0 (starting at the state y0)

could approach a number no lower than max{πk(ρ(y0), y0) - δkyk
0, πk[p

B’, D(pB’)] - δkDk(p
B’)}.
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Thus, (8) and (9) follow.

(c) Small unilateral upward deviations in capacity at the state y* must be punished by

switching to a capacity vector with both coordinates strictly exceeding those of y*. Thus, with

respect to continuity of strategies, in some small right hand side neighbourhood of y1
*, O(y1

*),

cl(Θ) must lie above the Pareto efficient frontier in the capacity space and it must have

strictly positive slope. Therefore, in O(y1
*) cl(Θ) can be described by a strictly increasing

function f. Since cl(Θ) is a single connected compact curve, O(y1
*) can contain neither points

at which a limit of f does not exist nor points at which a limit of f differs from a value of f.

Also, f is defined at each point of O(y1
*). Thus, f is a continuous function. The last claim

of this part of the proposition is obvious. Otherwise, small unilateral upward deviations in

capacity at the state y* could not be punished.

4. SUFFICIENT CONDITIONS

In this section we give sufficient conditions of the existence of a renegotiation-quasi-proof

continuous strategy Markov perfect equilibrium of GDD. We characterize the set of limits of

all continuation equilibrium paths of all such equilibria. We show that, under one additional

assumption, Pareto efficiency and conditions analogous to (8), but expressed in terms of

gross rather than net profits, are sufficient for a capacity vector to be a limit of all

continuation equilibrium paths in the capacity space of some renegotiation-quasi-proof

continuous strategy Markov perfect equilibrium of GDD.

PROPOSITION2. Assume that y* ∈ Y is a Pareto efficient capacity vector and there
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exists pB(ymax) ∈ PB(ymax) such that

πi[D
−1(y*), y*] ≥ πi[p

B(ymax), ymax], i ∈ {1, 2}. (11)

Also assume that, for each pB(ymax) ∈ PB(ymax), there is a neighbourhood O[D(pB(ymax))] of

D[pB(ymax)] such that, for every y∈ O[D(pB(ymax))], PB(y) is a singleton. Then there exists

a vector of discount factorsβ0 ∈ (0, 1)2 such that, for all vectors of discount factorsβ ∈ [β1
0,

1) x [β2
0, 1), there exists a renegotiation-quasi-proof continuous strategy Markov perfect

equilibrium of GDD, whose all continuation equilibrium paths in the capacity space converge

to y*.

Proof. Preliminaries. Let yB = D[pB(ymax)], where pB(ymax) satisfies (11). Note that

yB must lie above the Pareto efficient frontier. It cannot lie on the Pareto efficient frontier.

(If y is Pareto efficient, it lies below both firms’ Cournot reaction curves, so (7a) is satisfied

as a strict inequality at D−1(y) for both firms. Assumption 9 rules out the case yB = ymax.)

Suppose that it lies below the Pareto efficient frontier. Then at pB(ymax) (7a) must be

satisfied as equality for both firms. Take a Pareto efficient capacity vector y’ with yj’ > y j
B

for both j ∈ {1, 2}. We have PB(y’) = {D −1(y’)}. (Pareto efficiency of y’ implies that the

conditions of part (d) of Lemma 1 are satisfied.) This contradicts the last claim of part (g) of

Lemma 1.

Let f:Y1 → Y2, be a linear function with f(y1
*) = y2

* whose first derivative equals
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The equality of the two expressions follows from Pareto efficiency of y*. Pareto efficiency

of y* also implies that f is strictly increasing. The fact that the derivative of f equals the

expressions given in (12) ensures that the functions

[D1
−1(y1, f(y1)) - c1 - δ1]y1 (13a)

and

[D2
−1(y1, f(y1)) - c2 - δ2]f(y1), (13b)

whose domain is [y1
*, y1

max], are strictly decreasing at y1
*. Moreover, they are strictly

decreasing on their whole domain. This follows from properties of partial derivatives of

inverse demand functions implied by Assumption 8.

Let y1
0 be the lowest y1 satisfying for some k∈ {1, 2}

where p = D−1[y1, f(y1)]. Set y0 = (y1
0, f(y1

0)). The last claim of part (g) of Lemma 1 implies

that yi
0 > y i

B and yj
0 < y j

B, i ≠ j, or y0 = yB.

For each j∈ {1, 2} and i ≠ j, there is a left hand side neighbourhoodΩL(y j
B) of y j

B,

a right hand side neighbourhoodΩR(y i
B) of y i

B, and a continuous strictly decreasing function

ωj:ΩL(y j
B) → ΩR(y i

B) such that, for each yj ∈ ΩL(y j
B), PB((yj, ωj(yj))) = {D −1((yj, ωj(yj)))}, and

at D−1((yj, ω(yj))) (7a) is satisfied as equality for firm i. This can be seen as follows.

Assumption 9 implies that, for each yj ∈ ΩL(y j
B)\{y j

B}, there is yi ∈ (y i
B, y i

max) such that at
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D−1((yj, yi)) (7a) is satisfied as equality for one of the firms. It cannot be satisfied as equality

for firm j, because then we would have D−1((yj, yi)) ∈ PB((y j
B, yi)), contradicting the

assumption of the uniqueness of a capacity constrained Bertrand equilibrium in some small

neighbourhood of yB. Thus, at D−1((yj, yi)) (7a) must be satisfied as equality for firm i. We

setωj(yj) = yi. Assumption 8 implies that when yj is decreasing,ωj(yj) must be increasing.

Uniqueness of a capacity constrained Bertrand equilibrium at (yj, ωj(yj)) follows from part (e)

of Lemma 1. To see continuity ofωj, consider a sequence {yj
n} n

∞
=1 of numbers from the

domain ofωj converging to yj from its domain. A corresponding sequence {ωj(yj
n)} n

∞
=1 has

a converging subsequence (because it is bounded). Denote its limit by yi’. Parts (b) and (e)

of Lemma 1 imply that {D−1((yj, yi’))} = P B((yj, yi’)). The last claim in part (g) of Lemma

1 implies that we must have yi’ = ωj(yj).

Obviously, the domain ofωj can be extended leftwards (with all its properties

established above holding) until we reach a point yj such that either D−1((yj, ωj(yj))) ∈ PB(ymax)

or yj = 0.

The assumption of the uniqueness of a capacity constrained Bertrand equilibrium in

some small neighbourhood of D(pB’) for each pB’ ∈ PB(ymax) implies that PB(ymax) is a

singleton. If PB(ymax) had at least two different elements, pB and pB’, then (with respect to part

(g) of Lemma 1) the graphs of functionsωj andωi, i ≠ j, joining D(pB) and D(pB’) would have

to coincide. Thus, each point of this graph would be a demand vector at some element of

PB(ymax), contradicting the above assumption of local uniqueness of a capacity constrained

Bertrand equilibrium.

The above considerations further imply that PB(y) is a singleton for each y∈ Y. For

capacity vectors lying below and to the left from curvesωj andωi or on these curves the latter

claim follows from part (e) of Lemma 1. For other capacity vectors it follows from part (g)
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of Lemma 1. Thus, taking into account part (b) of Lemma 1, PB is a continuous function.

If y0 = D[pB(ymax)], the arguments in the following parts of the proof are significantly

simplified (in an obvious way). Therefore, in the remainder of this proof we assume that yk
0

> yk
B and yj

0 < y j
B, j ≠ k, where (14) holds for firm k. Construct functionωj, j ≠ k, for

pB(ymax). Its properties imply that yk
0 = ωj(yj

0).

Description of equilibrium strategy profile s*. The line segment [y*, y0] corresponds

to cl(Θ) from the proof of Proposition 1. We define function L:[y*, y0] → [0, 1] by L(y) =

(yj - yj
*)(yj

0 - yj
*)−1. Obviously, L is continuously invertible. We use the symbol Li

−1(x) to

denote i-th coordinate of the capacity vector y∈ [y*, y0] satisfying L(y) = x.

We further define two parameters, used in the definition of equilibrium strategies:ψ

> 0 and r∈ (0, 1). We assume thatψ is close to zero and r is close to one. For y∈ Y we

setλ(y) = ψ f(y1) - y2 . The variableξ(y), used in the definition of equilibrium strategies,

is defined as follows. If y2 ≤ f(y1), then

ξ(y) = rL[(max{y1
*, min{(1 + λ(y))y1, y1

0}},

f(max{y1
*, min{(1 + λ(y))y1, y1

0}}))]. (15a)

If y2 ≥ f(y1), then

ξ(y) = rL[f −1(max{y2
*, min{(1 + λ(y))y2, y2

0}}),

max{y2
*, min{(1 + λ(y))y2, y2

0}})]. (15b)

The investment expenditures part of s* is given by

η i
*(y) = αi[yi, max{Li

−1[ξ(y)], α i
−1(yi, 0)}], i ∈ {1, 2}. (16)

We set the parameter r close enough to one to ensure that

α i
−1(yi, 0) ≤ L i

−1[ξ(y)] for each y∈ [y*, y0] and for both i∈ {1, 2}. (We identify other factors

restricting the lower bound on r below.)

Let k be the index of the firm for which (14) holds and let j≠ k. The price part of
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s* is given byρ*(y) = D−1(y) for all y ∈ Y lying below and to the left from the graphs of

functionsωj andωk or on them (i.e., for all y∈ Y with yj ≤ y j
B and yk ≤ ωj(yj), and for all

y ∈ Y with yk ≤ yk
B and yj ≤ ωk(yk)), by ρ*(y) = D−1((yj, ωj(yj))) for all y ∈ Y with yj ≤ y j

B

and yk > ωj(yj) by ρ*(y) = D−1((yk, ωk(yk))) for all y ∈ Y with yk ≤ yk
B and yj > ωk(yk), and by

ρ*(y) = pB(ymax) = D−1(yB) for all y ∈ Y with yi ≥ y i
B for both i ∈ {1, 2}.

Of course, si
* = (ρ i

*, η i
*) for both i ∈ {1, 2} and s* = (s1

*, s2
*).

Strategy profile s* forms a Markov perfect equilibrium.Clearly, strategies depend only

on a current capacity vector, so they are Markov. To show that they form a subgame perfect

equilibrium, we first consider a unilateral single period deviation in investment expenditures

by firm i ∈ {1, 2} at state y∈ Y with α−1[y, η*(y)] ∈ [y*, L−1(r - d)], where d is a very

small positive real number. It causes an upward shift in (or start of) movement along the

line segment [y*, y0] in the capacity space. (A continuation equilibrium path triggered by a

deviation can start outside this line segment. The important point is that it reaches [y*,

L−1(r)] in a finite number of periods bounded from above independently of the value of the

parameter r.) In the limit case r =βi = 1 (fixing r to one since the period when a deviation

takes place) this reduces firm i’s continuation average discounted net profit in comparison

with the situation without a deviation. Due to the continuity of firm i’s continuation average

discounted net profit in r andβi, the same holds also for r < 1 close enough to one andβi

< 1 close enough to one.

Now consider a unilateral single period deviation in investment expenditures by firm

k at y ∈ Y with α−1[y, η*(y)] ∉ [y*, L−1(r - d)]. In a continuation equilibrium triggered by

a deviation the play in one period reaches a subgame with firm k’s continuation equilibrium

average discounted net profit no higher than its continuation equilibrium average discounted

net profit in a subgame in which a deviation took place. With respect to definition of y0 and
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ρ*, for βk ∈ (0, 1) close enough to one, for r∈ (0, 1) close enough to one, and for d > 0

sufficiently small, if firm k incurred investment costsδkLk
−1(r - d) or higher in each of the

two periods (including a period in which a deviation took place) before the play reaches that

subgame, a deviation would decrease its continuation average discounted net profit. In reality

of a deviation firm k incurs in a period when a deviation takes place investment costs larger

than (in the case of an upward deviation in capacity) or in the following period investment

costs no smaller than (in the case of a downward deviation in capacity)δkLk
−1(r - d). Thus,

for βk < 1 close enough to one (so that (1 -βk) is close to (1 -βk
2)) firm k cannot increase its

continuation average discounted net profit by a deviation of the type analyzed here.

Finally, consider a single period unilateral deviation in investment expenditures by

firm j at y ∈ Y with α−1[y, η*(y)] ∉ [y*, L−1(r - d)]. In a continuation equilibrium triggered

by a deviation the play in a finite number of periods, bounded from above independently from

r and βj, reaches a subgame with firm j’s continuation equilibrium average discounted net

profit no higher than its continuation equilibrium average discounted net profit in a subgame

in which a deviation took place. Forβj ∈ (0, 1) close enough to one, for r∈ (0, 1) close

enough to one, for d > 0 sufficiently small, and with respect to (11), if firm j incurred

investment costsδjL j
−1(r - d) or higher in every period before reaching that subgame

(including the period in which a deviation took place), a deviation would decrease its

continuation average discounted net profit. An argument completely analogous to the one at

the end of the immediately preceding paragraph shows that even in the real situation created

by a deviation (with investment costs incurred only in the period of a deviation or in the

immediately following period), a deviation does not increase firm j’s continuation average

discounted net profit.

Continuity of s*. The choice ofρ* implies that (ρ1
*(y), ρ2

*(y)) is continuous in y.
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Continuity of (η1
*(y), η2

*(y)) in y follows from continuity of the functionsαi, α i
−1, (i ∈ {1, 2}),

L, L−1, f−1, maximum, minimum, ξ(y), andλ(y).

Renegotiation-quasi-proofness of s* follows from the fact that y* is Pareto efficient

and that s*(y*) = y*.

REMARK 1. Proposition 2 does not directly imply that the set of renegotiation-quasi-

proof continuous strategy Markov perfect equilibria of GDD is nonempty. Nevertheless, the

method of its proof enables us to show that the latter set is nonempty. Clearly, there is a

Pareto efficient capacity vector y* such that the half-line (in the non-negative orthant of the

two-dimensional Euclidean space) with y* as its origin and slope given by (12) passes through

D[pB(ymax)]. Then the method used in the proof of Proposition 2 to handle deviations by firm

k at y ∈ Y with α−1[y, η*(y)] ∉ [y*, L−1(r - d)] can be used for both firms. The condition

(11) is not needed, it is enough that

πi[D
−1(y*), y*] - δiy i

* > πi[p
B(ymax), D(pB(ymax))] - δiDi[p

B(ymax)], ∀ i ∈ {1, 2}, (17)

which is guaranteed by (12).

REMARK 2. We have used the condition (11) in the formulation of Proposition 2 in

order to minimize number of requirements contained in sufficient conditions of the

existence of a renegotiation-quasi-proof continuous strategy Markov perfect equilibrium of

GDD and to use only requirements that are easily comprehensible and based on notions clearly

related to well-known concepts in economics (like a capacity unconstrained Bertrand

equilibrium, coinciding with a standard Bertrand equilibrium). We could replace (11) by a

less restrictive but more cumbersome requirement that, for each yj ∈ [y j
0, y j

B],

[D j
−1((yj, ωj(yj))) - cj - δj]yj < πj[D

−1(y*), y*] - δjyj
*, (18)

where capacity vector y0, index j, and the functionωj are defined as in the "Preliminaries"
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part of the proof of Proposition 2.

5. CONCLUSIONS

We analyzed a dynamic duopoly in which simultaneously moving firms choose in

each period investment expenditures, affecting next period capacities, and prices charged.

(The results can be applied to other dynamic games in economics or political science where

players simultaneously choose actions affecting future state variables and other actions whose

consequences are constrained by state variables.) A reduction of the set of equilibria was

based on imposing three requirements on subgame perfect equilibrium strategies. First, we

required them to be Markov. Second, we required that equilibrium strategies be continuous

(functions of their arguments). Third, we required them to be renegotiation-quasi-proof.

This still leaves a continuum of equilibria, even a continuum of limits of continuation

equilibrium paths. Nevertheless, the set of equilibria (and especially of limits of continuation

equilibrium paths) is restricted by the lower bound on continuation equilibrium average

discounted net profits derived from single period net profits at the capacity unconstrained

static Bertrand equilibrium of the analyzed duopoly.

We have derived (in part (c) of Proposition 1) a necessary condition that a function

describing continuation equilibrium paths must satisfy in a neighbourhood of their limit.

Thus, although we did not identify the unique limit of all continuation equilibrium paths of

all (renegotiation-quasi-proof continuous strategy Markov perfect) equilibria, evaluation of

them (and, possibly, choice between them) can be based on judgement on how reasonable

continuation equilibrium paths, and equilibrium strategies generating them, are. (See also the
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discussion of strategies versus payoffs in [10].) For example, if y1
* = y2

* = 5, then the linear

punishment path y2 = 5y1 - 20 (implying that a deviation by firm one to capacity 6 would

increase difference y2 - y1 to slightly more than 4, whereas a deviation by firm two to

capacity 6 would increase it only to slightly more than 0.8) does not seem to be plausible.

(Under the assumptions made in this paper, for each Pareto efficient capacity vector

satisfying (11) there is exactly one linear punishment path.)

We have made the assumption of constant marginal costs of production only for the

sake of simplicity of exposition. All qualitative results continue to hold also for strictly

convex production costs functions, but a capacity constrained vector demand function Z(p,

y) must be redefined, taking into account that, at a given price, a firm will not produce and

sell more than an amount equal to its competitive supply.
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