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Článek analyzuje model dynamického oligopolu s rovnorodým produktem, nákladmi zme ˇn výstupu mezi
jednotlivými obdobími a investicemi, které ovlivn ˇují mezní náklady. Autor používá požadavek
spojitosti strategií a nejslabší možné kriterium odolnosti vu ˚č i renegociaci, které nazývá
"kváziodolností vu ˚č i renegociaci," na výbe ˇr podmnožiny Markovových dokonalých rovnováh, které
mají spolec ˇnou limitu rovnovážných trajektorií v podr ˇízených hrách. Ve všech Markovove ˇ
dokonalých rovnováhách se spojitými strategiemi, kváziodolných vu ˚č i renegociaci, mezní náklady
a cena produktu každé firmy konvergují k spolec ˇným hodnotám, které by, kdyby byly nekonec ˇně
opakovány, maximalizovali c ˇistý zisk každé firmy.

I. Introduction

Many infinite horizon, discrete time oligopoly models involve physical links between

periods, i.e., they are oligopolistic difference games. These links can stem, for example, from

investments, from advertising, or from the costs of changing outputs or prices. In difference

games, a current state, which is payoff relevant, should be taken into account by rational

players when deciding on a current period action. If strategies depend only on a current state

1 A CERGE ESC Grant is acknowledged as a partial source of financial support.



(which is payoff relevant), they are called Markov.2 By applying the requirement of

subgame perfection to Markov strategies which form a Nash equilibrium, we are led to the

concept of a Markov perfect equilibrium.3 In many oligopolistic infinite horizon difference

games, the Markov perfect equilibrium is non-collusive.4 Maskin and Tirole’s (1988) model

of a dynamic Bertrand duopoly is a notable exception. In their paper, the existence of payoff

relevant states stems from the sequential naming of a price by duopolists (i.e., one of them

names a price in odd periods, the other in even periods). The price set in a period t also

remains in effect in a period t + 1. Unfortunately, it is hard to imagine how to modify that

model to include more than two firms.

A firm’s costs can change over time. Thus, the parameter(s) of the current period cost

function is (are) a natural component of a payoff relevant state vector. The current period

expenditures affecting the next period cost function are then included among the firm’s choice

of variables. We have adopted this approach for this paper. The model analyzed here is an

infinite horizon dynamic oligopoly, composed of firms which have the following

characteristics: 1) they produce to order a single homogeneous non-durable good, 2) changes

of their output between periods are costly, 3) their investments affect the next period’s

marginal costs (constant over the range of possible outputs), 4) they discount future profits.5

The costs of changes in output can stem, for example, from additional charges when

the quantities of inputs ordered are changed shortly before delivery. The costs of a reduction

2 A justification for focusing on Markov strategies is given below.

3 For a thorough characterization of a Markov perfect equilibrium see Maskin and Tirole
(1994).

4 See Maskin and Tirole (1987) for a typical example. This differs strikingly from results
of the research on subgame perfect equilibria in supergames with discounting of payoffs, known
as folk theorems, which imply the existence of a continuum of collusive subgame perfect
equilibria. See Fudenberg and Maskin (1986) for study of folk theorems.

5 This paper is a sequel to Horniac ˇek (1996). The model analyzed in that paper is extended
here by allowing for changes in costs.
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in output can also arise from labour-related legal restrictions. Thus, these costs are, in their

economic substance, different from investments into enlarging or maintaining capacity. In

a period t, firms, taking into account their output in a period t - 1, name prices, on the basis

of which customers place their orders and choose levels of investments which affect the next

period’s marginal costs. Orders are rationed if more than one firm charges the lowest price.

Paying attention to the costs of changes in output, the firms then decide which portion of

the orders they will confirm. The unconfirmed portion of the orders then becomes available

to the other firms. Outputs equal to the confirmed orders are produced, then sold, with each

firm incurring the costs of a change in output compared with the previous period. A state

in a period t is identified with a vector of outputs in a period t - 1 and avector of marginal

costs in a period t. (Outputs in a period t - 1 are payoff relevant, because changes in output

are costly.)

Focusing on Markov perfect equilibria imposes three limitations on equilibrium

strategies. The first limitation is that repetitions of a certain state vector cannot be counted.

Therefore, after a profitable unilateral deviation (i.e., a unilateral deviation that would increase

the deviator’s continuation average discounted net profit if the other firms ignored it), the play

generally passes through several different state vectors lying on a punishment path. The

second limitation concerns vectors of prices charged and investment expenditures, here called

action vectors. An action vector prescribed by an equilibrium strategy profile for the first

period must be the same as an action vector prescribed when the initial state reappears after

a deviation. Thus, at the beginning of the game, a collusive action vector can be only

gradually approached, unless the initial state cannot result from a profitable unilateral

deviation from any continuation equilibrium and does not lie on a punishment path. The third

limitation concerns the punishment path along which (or a subset of which) the play proceeds
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after a unilateral deviation. The punishment path must be the same for all firms. Otherwise,

it would not always be possible to determine from which of the punishment paths a deviation

took place on the basis of only a previous period’s output vector and a vector of the current

period’s marginal costs.

The analyzed dynamic oligopoly has a continuum of Markov perfect equilibria. We

approach the problem of equilibrium selection using two additional restrictions imposed on

Markov strategies. First, we require them to be continuous (functions of a current state).

Second, we impose the weakest possible requirement of renegotiation-proofness, which we

call renegotiation-quasi-proofness.

The requirement of the continuity of strategies, introduced into the analysis of infinite

horizon games with the discounting of payoffs (but without restriction to Markov strategies)

by J. W. Friedman and L. Samuelson (1994a, 1994b), is based on the view that punishments

should "fit the crime." The two main arguments made by Friedman and Samuelson (1994b)

in favour of continuous strategies are: 1) after a very small deviation, they are more

appealing to real human players than a Draconian punishment; and, 2) following a deviation,

the convergence of continuous strategies to the original action profile (or, in a Markov setting,

to the limit of the original sequence of action profiles) reflects an intuitively appealing

rebuilding of trust.

Continuous Markov strategies have the plausible property that large changes in payoff

relevant variables have large effects on current actions, minor changes in payoff relevant

variables have minor effects on current actions, and changes in variables that are not payoff

relevant have no effect on current actions. This is an improvement over Markov strategies

which do not require continuity. These strategies make a distinction only between effect and

no effect, according to whether a variable that has changed is payoff relevant or not. Thus,
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minor changes in payoff relevant variables can have large effects on current actions.6

Continuous Markov strategies are also an improvement in comparison with continuous

strategies without the Markov property, which allow changes in variables that are not payoff

relevant to affect current actions.

The requirement that strategies be Markov is an application of Harsanyi and Selten’s

(1992) principle of invariance of (selected) equilibrium strategies with respect to isomorphism

of games.7 The latter principle requires that strategically equivalent games have identical

solutions (i.e. selected equilibrium or subset of equilibria). Applying this principle to a

subgame perfect equilibrium of the analyzed difference oligopolistic game, we require that

selected equilibrium strategy profiles prescribe the same play in all subgames that are

strategically equivalent, i.e. in all subgames with the same initial state. The requirement of

continuity of strategies is a strengthening of this principle. When two subgames are, from

the strategic point of view, "close", i.e. the initial state of one of them is in a neighbourhood

of the initial state of the other, a sequence of vectors of actions prescribed for the former

should be in a neighbourhood (on the element-wise basis) of a sequence of vectors of actions

prescribed for the latter.8

The requirement of the continuity of Markov strategies imposes two additional

limitations on an equilibrium strategy profile. Firstly, the play cannot reach (or even

approach) a cycle between different state vectors, because the play would have to approach

it by switching between several paths, one for each element of the cycle. After certain

6 See the discussion of minor causes and minor effects in Maskin and Tirole (1994).

7 This fact is pointed out by Maskin and Tirole (1994).

8 Let (q, c) and (q’, c’) be initial states in two different subgames and let {p(t), x(t)} t
∞

=1

and {p’(t), x’(t)} t
∞

=1 be sequences of price vectors and vectors of investment expenditures
prescribed in them by a subgame perfect equilibrium profile of continuous Markov strategies.
Then, when (q, c) converges to (q’, c’), (p(t), x(t)) converges to (p’(t), x’(t)) for each
finite positive integer t.
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profitable unilateral deviations, it would not be possible to determine, from a state vector

alone, from which path the play deviated. Thus, for at least one of these paths, the set of

states from which the play switches would have to be open. This would contradict the

continuity of strategies. Also, an equilibrium strategy profile cannot generate a non-

convergent sequence of state vectors. Therefore, since the punishment path is the same for

all firms, all continuation equilibrium paths must converge to the same limit. Secondly, the

convergence of the play to this limit can only have the form of approaching it, without

reaching it in any finite time. Moreover, no matter to which vector of marginal costs it

converges, the play cannot converge to an asymmetric price vector. (Proposition 1 in Section

III makes this argument.) Thus, it must converge to a symmetric price vector.

Knowing this, intuition suggests that, since the costs affecting investments function

is the same for all firms, the play should converge to the symmetric vector of marginal costs.

Given the limit symmetric price vector, it is in the interest of each firm to approach the level

of marginal costs at which its profit is maximized.

Nevertheless, there is still a continuum of symmetric price vectors and corresponding

symmetric vectors of marginal costs, each of which is the limit of all continuation equilibrium

paths of a certain continuous strategy Markov perfect equilibrium. Therefore, we impose on

equilibrium strategies the weakest possible criterion of renegotiation-proofness, which we call

renegotiation-quasi-proofness. A continuous strategy Markov perfect equilibrium is

renegotiation-quasi-proof if no other continuous strategy Markov perfect equilibrium exists

which gives all the firms a higher continuation average discounted net profit in every

subgame. We show that, if all discount factors are close enough to one, in every

renegotiation-quasi-proof continuous strategy Markov perfect equilibrium all continuation

equilibrium paths converge to the same symmetric price and marginal cost vectors. These
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price and marginal cost vectors, if they are infinitely repeated, maximize each firm’s average

discounted net profit from an infinite repetition of the symmetric price and marginal cost

vectors. That is, switching to infinite repetition of any other price and marginal cost vectors

would not increase the average discounted net profit of any firm.

When applied to a continuous strategy Markov perfect equilibrium, the criterion of

a renegotiation-quasi-proofness leads to the selection of the unique limit of all continuation

equilibrium paths, although it does not lead to the unique equilibrium. Nevertheless, a

symmetric limit of vectors of marginal costs does not imply that a vector of marginal costs

in any finite period must be symmetric.9

The paper is organized as follows. In the next section we describe the analyzed

dynamic oligopolistic game. Section III contains the statement and proof of the necessary

conditions for the existence of a renegotiation-quasi-proof continuous strategy Markov

perfect equilibrium. In Section IV we prove sufficient conditions for its existence. Section V

concludes.

II. The Analyzed Dynamic Oligopoly

The analyzed industry consists of a finite number of firms, indexed by a subscript

i ∈ I = {1, 2, ..., n}, n ≥ 2, producing to order a single homogeneous non-durable good. We

analyze this industry in an infinite horizon model with discrete time.

The demand function D:[0,∞) → [0, D(0)], with D(0) finite, is continuous on its

domain. There isρ > 0 such that D(λ) > 0 for all λ ∈ [0, ρ) and D(λ) = 0 for all λ ≥ ρ. The

9 Therefore, our model is not inconsistent with (empirically observed) differences between
the costs of firms in the same industry.
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function D is strictly decreasing, concave and twice differentiable on the interval [0,ρ] (with

the right-hand side derivative at 0 and the left-hand side derivative atρ).

For each firm i∈ I and at each period t∈ {1, 2, ...}, the costs of producing output

qi(t) are ci(t)qi, where ci(t) ∈ (0, ∞). We let c(t) = (c1(t), ..., cn(t)). These costs depend (for

t > 1) on firm i’s investments xi(t-1) in period t - 1. (The marginal costs of each firm in

period one are given.) The costs affecting investments function g is the same for all firms

in all periods. If the firm’s current period marginal costs are ci(t) and it wants to have

marginal costs ci(t+1) in the next period, it must invest g(ci(t), ci(t+1)). Thus, g:(0,∞)2 → (0,

∞).10 (Negative investments, in the sense that firms receive payment if their marginal costs

increase enough, are not possible.) We assume that g is continuous, twice differentiable,

strictly increasing in its first argument, strictly decreasing in its second argument, strictly

convex in the vector of arguments, and that, for each ci ∈ (0, ∞) and each pi ∈ [0, ρ), the

function n−1(pi - ci)D(pi) - g(ci, ci) is strictly concave.11 There is pi ∈ [0, ρ] and ci ∈ (0, ∞)

such that n−1(pi - ci)D(pi) - g(ci, ci) > 0. For each ci ∈ (0, ∞) and each ci’ ∈ (0, ci), g(ci, ci’)

+ g(ci’, ci) > 2g(ci, ci).

We also assume that

and

10 A similar investment function was used by Flaherty (1980).

11 Given the assumptions already made (namely, concavity of D and strict convexity of g),
sufficient condition for this is that -n −1( ∂D(p i )/ ∂pi ) - 2( ∂2g(c i , c i )/ ∂c i (t) ∂ci (t+1)) < ( ∂2g(c i ,
c i )/ ∂c i (t)

2) + ( ∂2g(c i , c i )/ ∂c i (t+1) 2) for each c i ∈ (0, ∞) and each p i ∈ [0, ρ).
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In addition, we assume that function g is continuously invertible with respect to its second

argument and we denote this inverse by g−1[ci(t), xi(t)].

Besides production costs and investment expenditures affecting the next period

marginal costs, there are also the costs of changing an output in comparison with the previous

period, which are a function of the absolute value of a difference between the current and the

previous period output. For each firm i∈ I, these costs are expressed by a functionαi:[0,

D(0)]2 → [0, ∞). We haveαi[qi(t - 1), qi(t)] = γi[ qi(t - 1) - qi(t) ], where the functionγi:[0,

D(0)] → [0, ∞) is continuous, twice differentiable, and strictly convex12 on its domain,

strictly increasing at each point of its domain, except at 0 where it has a zero derivative, and

γi(0) = 0. The costs of changes in an output can stem, for example, from additional charges

incurred when ordered quantities of inputs are changed shortly before delivery or, in the case

of a reduction of an output, from labour-related legal restrictions.13 Thus, these costs are, in

their economic substance, different from investments into enlarging or maintaining capacity.

Firm i ∈ I discounts revenue and all costs with a discount factorβi ∈ (0, 1) and we

setβ = (β1, ..., βn).

In a period t∈ {1, 2, . . . }, each firm, taking into account its output in the

previous period, names a price pi(t) ∈ Pi = [0, ρ]. We let P = Xi∈IPi.

For each i∈ I, the initial output level qi(0) ∈ [0, D(0)] is given. This can be

explained by the fact that the analyzed oligopoly existed before period one, but we started to

observe and analyze it only as of period one.

12 The assumption that γ i is strictly convex realistically implies that the firm’s
competitive supply y i (p i , z i , c i ) (see below) is finite for all feasible p i and z i .

13 Our qualitative results would not change if we assumed that only increases in an output
are costly. Nor they would change if we assumed asymmetry between costs of increasing and
reducing an output.
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A vector of prices in a period t, p(t) = (p1(t),..., pn(t)), together with a vector of outputs

in a period t - 1, q(t−1) = (q1(t−1),..., qn(t−1)), uniquely determines a vector of outputs in

a period t, q(t). Let yi(pi, zi, ci) be firm i’s competitive supply at price pi when it has

marginal costs ci, and its output in the previous period was zi ≥ 0. That is, yi(pi, zi, ci) is the

output that firm i would produce if it were not constrained by supply of the other firms, or

by market demand. The output yi(pi, zi, ci) is defined by yi(pi, zi, ci) = argmax{(pi - ci)λ - γi( λ

- zi ) λ ∈ [0, ∞)}. Clearly, if pi > ci (i.e., pi - ci > 0 = γ i’(0), where the apostrophe denotes

the first derivative), then yi(pi, zi, ci) > zi and the quantity yi(pi, zi, ci) satisfies the first order

condition pi - ci = γ i’[y i(pi, zi, ci) - zi]. If p i = ci, then yi(pi, zi, ci) = zi. If pi < ci (i.e. pi -

ci < 0 = -γ i’(0)), then yi(pi, zi, ci) < zi and the quantity yi(pi, zi, ci) satisfies the first order

conditions pi - ci ≤ -γ i’[z i - yi(pi, zi, ci)] and (pi - ci + γ i’[z i - yi(pi, zi, ci)])yi(pi, zi, ci) = 0.

Consider p∈ P and z∈ [0, D(0)]n. The vector of outputs sold when the current

price vector is p, the vector of immediately preceding period outputs is z, and the current

vector of marginal costs is c, is denoted by q(p, z, c), and is defined inductively. For price

λ and price vector p set J0(λ, p) = {i ∈ I pi = λ}. Let λ0 = mini∈Ipi. For firm

i = min{j ∈ J0(λ0, p) yj(pj, zj, cj) ≤ yk(pk, zk, ck) ∀ k ∈ J0(λ0, p)}

the output sold is

qi(p, z, c) = min{yi(pi, zi, ci), J0(λ0, p) −1D(λ0)}
14

and we set J1(λ0, p) = J0(λ0, p)\{i} and D1(λ0) = D(λ0) - qi(p, z, c). If J1(λ0, p) ≠ ∅, we find

firm

i = min{j ∈ J1(λ0, p) yj(pj, zj, cj) ≤ yk(pk, zk, ck) ∀ k ∈ J1(λ0, p)}.

The output sold by this firm is

qi(p, z, c) = min{yi(pi, zi, ci), J1(λ0, p) −1D1(λ0)},

14 For a finite set J, the symbol J denotes its cardinality.
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and we set J2(λ0, p) = J1(λ0, p)\{i} and D2(λ0) = D1(λ0) - qi(p, z, c). We continue in this way

with Jk(λ0, p) and Dk(λ0) for k = 3, ..., J0(λ0, p) - 1. Then, unless J0(λ0, p) = I, we setλ1

= min{pi i ∈ I\ J0(λ0, p)} and, using the residual demand Dr(λ1) equal to D(λ1) minus the

sum of outputs sold by the firms in J0(λ0, p), instead of D(λ0), we repeat the above procedure

for the firms in J0(λ1, p). We continue in this way until we determine qi(p, z, c) for all i ∈

I. We let q(p, z, c) = (qi(p, z, c))i∈I. We also set Q = [0, D(0)]n.

The changes in an output in a period t in comparison with an output in a period t -

1 are costly. Also,γi is strictly convex for all i∈ I, which implies that yi(pi, zi, ci) is finite

and depends on zi, so that firm i’s preferences over various levels of its current period output

depend on its output in a preceding period. So, an output vector q(t - 1) is payoff relevant

in a period t. The current vector of marginal costs is obviously payoff relevant. Therefore,

the state vector in period t is a(t) = (q(t - 1), c) and the set A = [0, D(0)]n x (0, ∞)n is the

state space.15 We assume that each firm in every period observes the vector of the outputs

of the previous period and knows its own current marginal costs (but it need not know the

current marginal costs of the other firms).

Firm i’s (i ∈ I) profit in a period t, gross of costs of changing an output in comparison

with a period t - 1 and gross of investment expenditures affecting the next period marginal

costs, is

(3a) πi[p(t), q(t − 1), c(t)] = (pi(t) - ci(t))

qi[p(t), q(t − 1), c(t)].

Firm i’s net profit in a period t is

(3b) πi[p(t), q(t − 1), c(t)] - αi[qi(t − 1), qi(p(t),

15 This definition of the state space does not reflect the requirement that (as of period
2) any feasible z ∈ Q satisfies z = q(p, z’, c(t)) for some p ∈ P and some feasible z’ ∈ Q . The
narrower definition of the state space, taking this into account, would be cumbersome and would
not change the results of our analysis.
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q(t − 1), c(t))] - xi(t),

where xi(t) = g(ci(t), ci(t+1)).

We assume that binding contracts between firms are not possible. Each firm can, in any

period, exit the industry without cost.16 A Markov strategy of (the non-exiting) firm i, si,

is a function that assigns to each element of the state space a price charged and investment

expenditures affecting its next period marginal costs, i.e., si:A → Pi x (0, ∞). Thus, a Markov

strategy is a special case of a closed loop strategy.17 The set of all feasible Markov

strategies of firm i is denoted by Si. We let S = Xi∈ISi, s = (s1, ..., sn) ∈ S, and write s−i for

(s1, ..., si−1, si+1, ..., sn).
18 We denote by sip the first component (price) and by six the second

component (investment expenditures) of the strategy si, i.e. sip:A → Pi and six:A → (0, ∞). We

also let sp = (sip)i∈I and sx = (six)i∈I.

For each firm i∈ I, the average discounted net profit is its payoff function. The

average discounted net profit of firm i∈ I in a subgame with an initial state (q, c), when the

firms follow a Markov strategy profile s, is

∞
(4) Πi(s, q, c) = (1 -βi) ∑βi

t-1{ πi[sp(q(t-1), c(t)),
t=1

q(t−1), c(t)] - αi[qi(t−1), qi(t)] - six(q(t-1), c(t))},

where q(0) = q, q(t) = q[sp(q(t-1), c(t)), q(t-1), c(t)] for each positive integer t, and ci(t+1)

16 This is a natural assumption in an infinite horizon model. Since firms with a very low
gross profit must also incur positive costs of investments affecting the next period marginal
costs (bounded away from zero if their marginal costs are bounded from above),
exit must be explicitly taken into account. Nevertheless, in order to avoid cumbersome notation,
we do not add the possibility of exit to the firms’ strategy spaces. Proceeds from selling the
equipment of an exiting firm can be disregarded in our analysis.

17 We restrict our attention to pure strategies. With respect to the costs of changing
an output, a randomization between prices does not seem to be appealing. There is hardly any
rationale for a randomization between investment expenditures.

18 Other symbols with the subscript "−i" have an analogous meaning.
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= g−1[ci(t), six(q(t-1), c(t))] for each integer t > 1 and every i∈ I. (Without loss of generality,

we can number the first period of a subgame by one.) We setΠ(s, q, c) = (Π1(s, q, c), ...,

Πn(s, q, c)). In what follows, "GO," or "the game GO," refers to the analyzed dynamic

oligopoly.

A Markov perfect equilibrium is a profile of Markov strategies that yields a Nash

equilibrium in every subgame of GO. The following definition expresses this more formally:

Definition 1. A profile of Markov strategies s∈ S is a Markov perfect equilibrium of GO

if, for each state a = (q, c)∈ A, for every firm i ∈ I, and for each strategy si’ ∈ Si, Πi(s, q,

c) ≥ Πi((si’, s−i), q, c).

If n - 1 firms use Markov strategies, then the best response of the remaining firm

(chosen from the whole set of its closed loop strategies) is also a Markov strategy. If n -

1 firms use Markov strategies and the best response of the remaining firm is not unique,

some of its best responses are also Markov strategies. Therefore, a Markov perfect

equilibrium is still a subgame perfect equilibrium when the Markov restriction is not imposed.

A firm i’s Markov strategy si is continuous if it is a continuous function from A to

Pi x (0, ∞). The set of all feasible continuous Markov strategies of firm i is denoted by Si
*.

We let S* = Xi∈ISi
*.

A continuous strategy Markov perfect equilibrium is a Markov perfect equilibrium

strategy profile in which all strategies are continuous functions. For the sake of completeness,

we give a formal definition:
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Definition 2. A continuous strategy Markov perfect equilibrium of GO is a profile of

continuous Markov strategies s* ∈ S* such that for each state a = (q, c)∈ A, for every firm

i ∈ I, and for each strategy si’ ∈ Si, Πi(s
*, q, c) ≥ Πi((si’, s−

*
i), q, c).

Note that in Definition 2 we explicitly require that a strategy profile that is a

continuous strategy Markov perfect equilibrium be immune to all unilateral deviations to all

Markov strategies, including those that are not continuous.

We conclude this section by defining a renegotiation-quasi-proof continuous strategy

Markov perfect equilibrium:

Definition 3. A continuous strategy Markov perfect equilibrium s* ∈ S* of GO is

renegotiation-quasi-proof if there is no other continuous strategy Markov perfect equilibrium

of GO, s’ ∈ S*\{s*}, such thatΠi(s’, q, c) > Πi(s
*, q, c) for each i∈ I and all (q, c)∈ A.

Thus, a continuous strategy Markov perfect equilibrium s* ∈ S* is renegotiation-quasi-

proof if firms, by (collectively) switching to another continuous strategy Markov perfect

equilibrium, cannot increase their continuation equilibrium average discounted net profits in

each subgame. This is the weakest possible concept of renegotiation-proofness. Switching to

another equilibrium is assumed to take place only if it increases the continuation equilibrium

average discounted payoff of each player in each subgame. Since it is such weak concept, we

do not find it appropriate to call it simply "renegotiation-proofness." On the other hand, we

cannot call it "weak renegotiation-proofness" because this term was already used by Farrell

and Maskin (1989) for a different concept.

As is usually the case in the literature on renegotiation-proofness, the set of (subgame
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perfect) equilibria to which firms are allowed to renegotiate is restricted here. Since we

assume, for reasons explained in the Introduction, that firms will coordinate on a continuous

strategy Markov perfect equilibrium at the beginning of the game, there is no reason to

assume that they will renegotiate to some other type of (subgame perfect) equilibrium.

When all discount factors are close to one, the concept of renegotiation-quasi-

proofness is similar to the concept of renegotiation-proofness used in Maskin and Tirole’s

1988 paper on dynamic price competition. In their paper, a renegotiation is based on the

change of a price vector that is infinitely repeated (after a finite number of periods) in each

continuation equilibrium. In our case it is based on the change of a common limit of all

continuation equilibrium paths.
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III. Necessary Conditions

In this section we show that every continuation equilibrium path (in price and

marginal costs space) of each renegotiation-quasi-proof continuous strategy Markov perfect

equilibrium must converge to the pair of symmetric vectors (p*, c*) with the following

property: If the pair (p*, c*) is infinitely repeated, each firm’s single period net profit, as

well as its average discounted net profit, is maximized, subject to the constraint that infinitely

repeated price and marginal cost vectors are symmetric. For each i∈ I,

(5) (pi
*, ci

*) = argmax{n−1(p1 - c1)D(p1) - g(c1, c1)

p1 ∈ P1, c1 ∈ (0, ∞)}.

Note that the assumptions in the preceding section ensure that the maximum in (5) is

unique.19

Proposition 1. Assume that the profile of continuous Markov strategies s* ∈ S* is a

renegotiation-quasi-proof continuous strategy Markov perfect equilibrium of GO (with all n

firms active) for all vectors of discount factorsβ ∈ Xi∈I[β i
*, 1), whereβ* ∈ (0, 1)n. Then each

continuation equilibrium path converges (in P x (0,∞)n) to the pair of symmetric price and

marginal costs vectors (p*, c*) defined by (5).

19 Obviously, we can restrict our attention to those marginal costs not exceeding ρ and such
that g(c i , c i ) ≤ max{p 1D(p 1) p 1 ∈ P1}.
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Proof. Let Θ be the union of all continuation equilibrium paths in the state space (i.e.

Θ ⊂ A) with the following property: Following a unilateral deviation at any a = (q, c)∈

Θ, s* prescribes a movement back along a continuation equilibrium path from which the

deviation took place. (If a unilateral deviation at a∈ A cannot be punished without a

decrease in prices charged by the firms that did not deviate, then a∈ Θ. This implies thatΘ

≠ ∅.) Denote by cl(Θ) the closure ofΘ. The set cl(Θ) must be a single connected compact

curve in A, not containing loops. If cl(Θ) were a union of two or more disjoint (or any

countable family of20) connected curves in A, or if it contained a loop, it would not be

possible to determine, on the basis of the current state alone, from which of them (or from

which part of the loop) a unilateral deviation took place. (Thus, an action profile prescribed

by an equilibrium strategy profile would not depend on the state at which a unilateral

deviation took place.) Therefore, for at least one of the connected subsets of cl(Θ), or for

at least one part of the loop, the set of states from which the play switched to that subset of

cl(Θ) (to that part of the loop) would have to be open, and this would contradict the

continuity of strategies. The continuity of strategies implies that cl(Θ) must be connected. The

fact that cl(Θ) is a single connected compact curve in A implies that all continuation

equilibrium paths in A must converge to the same state vector. Denote this state vector by

(q+, c+). Let p+ be the corresponding limit of price vectors, i.e. q+ = q(p+, q+, c+).

The equilibrium average discounted gross profit of a firm cannot tend to zero (or even

a negative number) as the firm’s discount factor tends to one (i.e. the limit of single period

gross profits of no firm can be zero). The equilibrium average discounted net profit of such

20 The set cl( Θ) cannot have a positive Lebesgue measure. In such a case, a direction of
movement in the state space would have to depend on whether a unilateral deviation took place,
and, if so, on the identity of the deviator. This approach is applied in Friedman and Samuelson
(1994b). Such information cannot be obtained from a current state alone.
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a firm would tend to a negative number (as its discount factor tends to one), so it would have

to exit the industry. This implies that the price vector p+ cannot be asymmetric. If the

equilibrium average discounted gross profit of all firms with pi
+ > minj∈Ipj

+ tended to a

positive number, then at p+, q+, and c+ the firms in J0(minj∈Ipj
+, p+) could not produce outputs

totalling D(minj∈Ipj
+). This would imply pi

+ ≤ ci
+ for all i ∈ J0(minj∈Ipj

+, p+). Therefore, the

equilibrium average discounted gross profits of these firms would tend to a non-positive

number as their discount factors tended to one.

The fact that p+ is symmetric implies that q+ must be symmetric. If it were not, for

a firm i with qi
+ < n−1D(p1

+) we would have pi
+ ≤ ci

+. With respect to the requirement of a

renegotiation-quasi-proofness, this implies that c+ must also be symmetric and each ci
+ must

maximize n−1(pi
+ - ci)D(pi

+) - g(ci, ci). Otherwise, a firm could, at the state (q+, c+), increase

its continuation equilibrium average discounted net profit by unilaterally deviating only in

investment expenditures. Punishing such a deviation would be impossible if the firms did not

observe the current marginal costs of the other firms. If the firms were to observe the current

marginal costs of the other firms, the punishment would not be renegotiation-quasi-proof.

Since p+, q+, and c+ are all symmetric, a renegotiation-quasi-proofness implies that (p+, c+) =

(p*, c*). If (p+, c+) were different from (p*, c*), a renegotiation to a continuous strategy

Markov perfect equilibrium, in which all continuation equilibrium paths (in P x (0,∞)n)

converge to (p*, c*), would increase the continuation equilibrium average discounted net profit

of each firm in every subgame.21 Q.E.D.

21 Following the assumptions of Proposition 1, a renegotiation-quasi-proof continuous
strategy Markov perfect equilibrium exists. The argument that p + is symmetric does not use
renegotiation-quasi-proofness. If a renegotiation-quasi-proof continuous strategy Markov perfect
equilibrium with all continuation equilibrium paths converging to (p’, c’) ≠ (p * , c * ), where p’
is symmetric, exists, then a condition analogous to (8a) and (8b) below, with p * and c * replaced
by p’ and c’, holds. This implies that (8a) and (8b) hold. Thus, if a renegotiation-quasi-
proof continuous strategy Markov perfect equilibrium with all continuation equilibrium paths
converging to (p’, c’) exists, then a renegotiation-quasi-proof continuous strategy Markov
perfect equilibrium with all continuation equilibrium paths converging to (p * , c * ) also exists.
(See Proposition 2.)
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IV. Sufficient Conditions

Proposition 1 in the preceding section implies that, if GO has a renegotiation-quasi-

proof continuous strategy Markov perfect equilibrium, then all its continuation equilibrium

paths (in P x (0,∞)n) converge to the symmetric price vector p* and the symmetric vector of

marginal costs c*, defined in (5). In this section we give the sufficient conditions under which

such equilibrium exists.

Proposition 2. Assume that

(6) yi(pi
*, qi

*, ci
*) ≥ n−1D(pi

*), ∀ i ∈ I,

where p* is the symmetric price vector and c* is the symmetric vector of marginal costs

defined in (5), and q* is the symmetric vector of outputs satisfying q1
* = n−1D(p1

*). Also

assume that there is a symmetric price vector p0 ∈ P and a vector of marginal costs c0 ∈ (0,

∞)n satisfying

(7) yi(pi
0, 0, ci

0) ≥ n−1D(pi
0), ∀ i ∈ I,

(8a) max{(pi - ci)D(pi) - g(ci’, ci) pi ∈ [0, pi
0], (ci’, ci) ∈ (0, ∞)2}

< (pi
* - ci

*)qi
* - g(ci

*, ci
*),22 ∀ i ∈ I,

and

(8b) max{(pi - ci)[D(pi) - ∑qj((p−
0
i, pi

0 + ε), 0, (c−
0
i, ci))]

j∈I\{i}

- g(ci’, ci) pi ∈ [pi
0, ρ], (ci’, ci) ∈ (0, ∞)2}

22 Note 19 also applies here.

19



< (pi
* - ci

*)qi
* - g(ci

*, ci
*), ∀ i ∈ I,23

whereε is a small positive real number. Then, there exists a vector of discount factorsβ* ∈

(0, 1)n such that for eachβ ∈ Xi∈I[β i
*, 1) there is a renegotiation-quasi-proof continuous

strategy Markov perfect equilibrium of GO in which, in each continuation equilibrium, the

play converges to the price vector p*, to the vector of marginal costs c*, and to the output

vector q*.

Proof. Set qi
0 = n−1D(p1

0) for each i∈ I. Let r ∈ (0, 1) and define a functionξ:A

→ [0, 1] by

Description of the equilibrium strategy profile s*.

The price part of the strategy profile s* is defined by

(10) sp
*(q, c) = ξ(q, c)p* + [1 - ξ(q, c)]p0.

The investments part of the strategy profile s* is given, for each i∈ I, by sx
*
i(q, c) = g[ci,

ci
+(q, c)], where, for each i∈ I and every (q, c)∈ A, ci

+(q, c) is the second element of a

sequence {ci
+(τ)} τ

∞
=1 maximizing

∞

23 For a set of specific forms of functions D, g, and γ i (i ∈ I), the conditions (7), (8a)
and (8b) can be expressed solely in terms of restrictions on their parameters, i.e. solely in
terms of restrictions imposed on primitives of the model.
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(11a) ∑β i
τ−1n−1[pi(τ) - ci

+(τ)]D(pi(τ)) - g[ci
+(τ), ci

+(τ+1)]
τ=1

subject to ci’(τ) ∈ (0, ∞) for all τ ∈ {1, 2, ...} and

(11b) yi[pi(τ), n−1D(pi(τ-1)), ci
+(τ)] ≥ n−1D(pi(τ)),

for all τ ∈ {2, 3, ...},

where p(1) = sp
*(q, c), c+(1) = c, and the sequence {pi(τ)} τ

∞
=2 is determined by (9) and (10)

under the assumption that no firm deviates. With respect to (6), along any continuation

equilibrium path price vectors converge to p*, vectors of marginal costs converge to c*, and

output vectors converge to q*. Also note that the solution of the dynamic programming

problem (11) is unique as it follows from the strict convexity of g and it is a continuous

function with the state space A as its domain. Therefore, the function sx
* is continuous.

The strategy profile s* forms a Markov perfect equilibrium.Strategies are functions of a

current payoff relevant state only, so they are Markov. Obviously, for each firm i∈ I, we

can restrict our attention to those marginal costs not exceeding max{ci(1), ρ} and no lower

than some level ci
− satisfying ci

− ≤ ci(1) and g(ci
−, ci

−) ≤ max{piD(pi) pi ∈ Pi. Then GO is

continuous at infinity and it is enough to examine unilateral single period deviations.

Let ∆ be a small positive real number such that (8a) and (8b) still hold when we

replace p0 by a symmetric price vector p’∈ P with each component equal to p1
0 + ∆. A

deviation in price by firm i in a period t at a state a = (q, c)∈ A with sp
*(q) ∉ [p0, p’]

causes24 the play to switch in a period t + 1 along the line segment [p0, p*] towards p0. (A

common price prescribed by sp
* after a deviation is lower than it would be if a deviation had

not taken place.) A deviation in investment expenditures by firm i in a period t at a state a

= (q, c) ∈ A with sp
*(q) ∉ [p0, p’], leading to an asymmetric vector of outputs in a period t

24 For two n-dimensional vectors b and b’ the symbol [b, b’] denotes the set of all their
convex combinations.

21



+ 1, causes the play to switch in a period t + 2 along the line segment [p0, p*] towards p0. (A

deviation in investment expenditures that does not lead to an asymmetric price vector cannot

increase the deviator’s continuation average discounted net profit.) In the limit caseβi = r

= 1 (fixing βi and r to one beginning in the period in which a deviation took place) such a

deviation strictly reduces firm i’s continuation average discounted net profit. Due to the

continuity of the latter inβi and r, the same holds also forβi < 1 and r < 1 close enough to

one.

A deviation in price or a deviation in investment expenditures leading to an

asymmetric vector of outputs, at a state a∈ A with sp
*(q, c) ∈ [p0, p’] restarts the movement

along the line segment [p0, p*], beginning with a vector in the set [p0, p’]\{p’}. That is, it

triggers a continuation equilibrium that gives a deviating firm a continuation equilibrium

average discounted net profit no higher than the one it would earn in a subgame in the first

period of which a deviation took place. The conditions (7), (8a) and (8b) imply that, when

a deviator’s discount factor is close enough to one, the resulting single period net profit is

strictly lower than a deviator’s continuation equilibrium average discounted net profit in a

subgame in the first period of which the deviation took place. Therefore, such a deviation

decreases a deviator’s overall continuation average discounted net profit.

The continuity of s* follows from the continuity of the functions maximum, minimum,ξ, g,

yi(pi, zi, ci) for all i ∈ I, and continuity of the function sx
*.

Renegotiation-quasi-proofnessof s* follows from the definition of the price vector p* and the

vector of marginal costs c* in (5), and the fact that si
*(q*, c*) = (pi

*, g(ci
*, ci

*)) for all i ∈ I.Q.E.D.

So far we have only allowed an exit from the industry. Entry into the industry leads

to a new renegotiation-quasi-proof continuous strategy Markov perfect equilibrium, based on
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new values of p* and c*, computed according to (5), but for a new n. This follows from the

fact that the output vector and the vector of marginal costs created by entry can be viewed

(for a new number of firms) as the initial state of GO.25

V. Conclusions

In this paper we presented a method for the selection of the unique limit of all continuation

(subgame perfect) equilibrium paths in a dynamic Bertrand oligopoly. The firms in this

oligopoly produce a homogeneous good to order. Changes in their output are costly and

investments affect their next period marginal costs. The method presented here is based on

imposing three restrictions on strategies: Markov property, continuity, and renegotiation-quasi-

proofness. In order to compute their equilibrium strategies, the firms need to know only the

previous period vector of outputs and their own marginal costs. We (realistically) refrain from

assuming that firms observe the marginal costs of their competitors. Nevertheless, our results

continue to hold if marginal costs are publicly observable. Deviations in marginal costs (or

in the investment expenditures determining them) that need to be punished, i.e. those that

affect other firms, manifest themselves in deviations in outputs. We think that a similar

decomposition of players’ actions into the observable and the non-observable could be useful

in other dynamic games in economics.

25 Again, this new renegotiation-quasi-proof continuous strategy Markov perfect equilibrium
is not uniquely determined by our approach, but the limit of all its continuation equilibrium
paths is.
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