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Abstract
We build a dynamic oligopoly model with endogenous entry in which a particular

firm (leader) invests in an innovation process, facing the subsequent entry of other
firms (followers). We identify conditions that make it optimal for the leader in
the initial oligopoly situation to undertake pre-emptive R&D investment (strategic
predation) eventually resulting in the elimination of all followers. Compared to a
static model, the dynamic one provides new insights into the leader’s intertemporal
investment choice, its optimal decision making, and the dynamics of the market
structure over time. We also contrast the leader’s investment decisions with those
of the social planner.

Abstrakt
Tvoř́ıme dynamický oligopolńı model s endogenńım vstupem, ve kterém konkrét-

ńı firma (v̊udce) investuje v inovačńım procesu a čeĺı opětovným pokus̊um o vstup z
řad rival̊u (následovńıci). Nalézáme podmı́nky, při kterých je pro v̊udce optimálńı
podniknout v situaci, kdy na počátku existuje oligopol, preventivńı R&D inves-
tice (strategické predátorováńı), které př́ıpadně vyúst́ı v úplnou eliminaci všech
konkurent̊u. V porovnáńı se statickým modelem se ukazuje, že dynamický model
poskytuje nový pohled na volby v̊udce trhu např́ıč obdob́ımi, jeho rozhodnut́ı a
dynamiku struktury trhu v čase. Rovnež porovnáváme investičńı rozhodnut́ı v̊udce
s rozhodnut́ımi plánovače.
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hove, and three anonymous referees for helpful comments and suggestions, L. Straková and R. Stock for
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1 Introduction

Is monopoly an environment conducive to innovation? Is there persistence of monopoly, or

is there a change in the identity of the innovating firm (“leapfrogging”)? These questions

are not new among economists, but recently they seem to have been rekindled. In an

issue of The Economist (2004), the authors of the already-celebrated column “Economics

Focus” in their provocatively-entitled article “Slackers or Pace-Setters: Monopolies may

have more incentives to innovate than economists have thought” claimed that monopolies

may have a far more prominent role in generating innovation than previously thought.

The authors further expressed doubts about the prevailing economic theory according to

which “a monopolist should have far less incentives to invest in creating innovations than

a firm in a competitive environment.” Apparently, there is some controversy regarding

the role of market power and monopolies in creating innovations, and the key a resolution

it lies in the underlying incentives to engage in innovation.

Recent empirical evidence seems to support these Schumpeterian allegations from

The Economist: There is a positive relationship between market power and the intensity

of innovation (see, for instance, Blundell et al., 1999; Carlin et al., 2004; Aghion and

Griffith, 2004). Commenting on this empirical evidence, Etro (2004) stated that it “is

consistent with pre-emptive R&D investment by the leaders” (p. 282). In other words,

there will be only one firm at the end of the day, but this firm would display far more

competitive behavior than the standard monopolist; it would generate a higher flow

of R&D, charge a lower price, and produce more. As a consequence of such strategic

behavior, the Chandlerian phenomenon of the persistence of monopoly can arise.1

There are many real-world examples of monopolistic or dominant firms that are tech-

nological leaders and that invest more in innovation and R&D than their rivals (see Etro,

2004), and that survive over a long period of time. AT&T, a giant American telecommu-

nications company, is a good case in point. Founded in 1885, the company is one of the

largest telephone companies and cable television operators in the world. AT&T provides

voice, video, data, and Internet telecommunications services to businesses, consumers,

and government agencies. After becoming the first long-distance telephone network in

the US, AT&T made huge investments in research and development. As a result, the

company obtained near-monopoly power on long-distance phone services. Heavy invest-

ments in R&D together with aggressive behavior on the market allowed AT&T to acquire

crucial inventions and to spread its near monopoly power to other markets. The company

both bought patents for significant innovations and undertook innovations itself.2

1See Sutton (2007) for the theoretical and empirical issues concerning the measurement of the persis-
tence of market leaders.

2For instance, during the early 1920s, AT&T bought Lee De Forest’s patents on the “audion”, the
first triode vacuum tube, which let it enter the radio business. On the other hand, the first commercial
communications satellite, Telstar I, was commissioned by AT&T in 1962.
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The above observations on the relations among innovation, technological leadership,

and market power motivate our paper in that we aim to describe and analyze a particular

setup in which a persistence of monopoly can arise in the long run. More specifically, we

study the situation in which the technological leader facing endogenous entry may un-

dertake pre-emptive R&D investment (or, in our words, may adopt strategic predation),

that eventually leads to the exit of the follower firms and/or prevents or limits the entry

of new firms. We contrast this situation with one in which the leader (within the same

setup) accommodates the endogenous entry of followers, that is, co-exists with the fol-

lowers in an oligopolistic market structure. This comparison will enable us to study both

positive aspects of the two main strategies of accommodation and strategic predation (for

instance, which strategy yields higher R&D intensity), and normative aspects (social wel-

fare implications) of the two resulting market structures: oligopoly versus (constrained

or unconstrained) monopoly and their respective performances vis-à-vis a social planner.

The latter aspect, as we will see, carries important policy implications.

Our paper is related to a recent stream of industrial economics literature on en-

dogenous entry (see, for instance, Etro, 2004, 2006 and 2007; Erkal and Piccinin, 2007;

Davidson and Mukerjee, 2008; and Creane and Konishi, 2009). For instance, both Etro

(2006, 2007) and Creane and Konishi (2009) examine, among other things, both positive

and social welfare effects of strategic predation that a technological leader may exhibit

when faced with endogenous entry and exit. In modelling those features they rely on

a three- or two-stage version of the static Cournot oligopoly. The novel feature of our

approach, however, is that we utilize an explicit dynamic model in tackling these issues

and contrast it with its static (or quasi-dynamic) counterpart. This comparison can be

considered as the topic per se of our paper. Since strategic innovations and entry are

inherently dynamic phenomena, we argue that a suitable model aimed at capturing both

accommodating and pre-emptive, or predatory, behavior of the dominant firm should be

explicitly dynamic. Furthermore, to emphasize the role of the technological leader we

assume that the leading firm is the only one that invests in innovation.

The concept of two-stage competition used to be a typical tool to tackle standard

strategic interactions like the case when the incumbent firm undertakes a strategic in-

vestment in the first stage and then there is competition in quantities or prices in the

last, second stage. This concept concentrates on identifying “strategic effects” that in-

fluence first-period behavior and aims to characterize the resulting strategic rivalry. It

has proven successful in that the same strategic principles (e.g., overinvestment or under-

investment) apply in many economic environments, and the comparative static results

from static oligopoly theory can be used to provide information about strategic behavior

(see Fudenberg and Tirole, 1984; Tirole, 1990; Shapiro, 1989; and Etro, 2004 and 2006).3

3Etro (2006) however demonstrated that allowing for endogenous entry dramatically simplifies the
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Adding endogenous entry in the above two-stage framework, however, would require

an in-between (second) stage of the game that allows the competitors to decide whether

to enter the market or not after they observe the strategic move (R&D investment) on

the side of incumbent (leader) firm in the first stage. Thus, our static benchmark game

will be, in fact, a three-stage Cournot game in which one firm (“leader”) has a strategic

advantage in the form of a prior (first-stage) investment in R&D that leads to a unit cost

decrease. In the last (third) stage the leader and followers compete in quantities.

The concept of a two-stage (or multi-stage) oligopoly game relies, however, on an

artificial time structure and neglects potential intertemporal tradeoffs. From the per-

spective of a full-fledged dynamic model, it gives at best the steady state values of the

true underlying dynamic game. Thus, it neglects the dynamic adjustment process and

lacks the explicit motion of the strategic variables over time and their accompanying

comparative dynamics. More importantly, the set of strategies available to firms may be

richer than in the corresponding static model. In particular, the leader may go for early

or late predation, and the attractiveness of the predation strategy crucially depends on

the leader’s ability to translate its investment into an advantage on the product market.

To concentrate on the strategic aspects within the dynamic model we push the out-

put decision to the background and deal with the so-called reduced-form profit function,

making the firms’ flows of profits a function of unit costs. The unit costs of the firms

and the number of entrants serve as so-called state variables that are governed through

the control variable, namely R&D expenditures. Another important feature here is that

passage from a three-stage model to a dynamic one requires the introduction of a specific

adjustment parameter that captures the speed with which the R&D investments trans-

late into the unit cost reduction (see, for example, Fersthman and Kamien, 1987; and

Stenbacka and Tombak, 1997 for a utilization of a similar approach). This makes our

model more realistic because now it mimics the unavoidable time delay between R&D

investment and the corresponding R&D output. The dynamic approach also enables us

to study the behavior of the strategic variable over time and some of its comparative

dynamic effects, as well as the adjustment process, all of which are missing in the simple

three-stage framework.

Finally and most importantly, in an explicit dynamic model we can analyze how the

optimal strategy of a firm that possesses a strategic advantage may lead to a change in

market structure over time and thus create a persistence of monopoly. This phenomenon

cannot be modelled within a static three-stage game. In other words, the strategic ad-

vantage of the leader may enable it to exhibit pre-emptive behavior (or strategic preda-

tion) on its rivals, eventually turning the initially oligopolistic market structure into a

monopoly. In that case, the persistence of monopoly occurs endogenously due to contin-

taxonomy of business strategies since all that matters is whether strategic investment hurts the incum-
bent.
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uous investments that do not disappear once the monopoly position has been achieved.

The underlying dynamic optimization problem then involves an additional component

compared to the case when the leader chooses the accommodation strategy. Namely, via

its R&D investments the leader also determines how quickly predation takes place, i.e.,

at which point in time all rivals are eliminated.

Overview of main results

Our analysis provides the following new insights:

(a) The technological leader adopts the accommodation strategy only when its R&D

efficiency is “low” or/and the size of the market is relatively large (more precisely,

when fixed costs are small relative to the size of the market). In all other cases, the

leader opts for strategic predation aiming to achieve the monopoly position after a

certain time T .

(b) During the predation period (up to a certain time T ), the leader might even be

willing to incur losses in order to enjoy a monopoly profit from time T onward.

Thus, unlike in the static game, in a fully dynamic model the costs of predation

last for a certain period of time and have to be contrasted to the infinite stream

of monopoly profit earned afterwards. As these costs depend on the speed of the

adoption of new technology, strategic predation becomes a more attractive strategy

to pursue when the adoption of new technology accelerates. In the limit case, when

the adoption is instantaneous, the dynamic model essentially reduces to the static

one.

(c) The time pattern of R&D investments crucially depends on the equilibrium strategy:

If accommodation is the optimal strategy, then the leader chooses an R&D path

which steadily increases over time towards a unique steady-state value. If, on the

other hand, the strategic predation strategy becomes optimal, then the leader first

invests significantly in R&D in order to achieve the monopoly position at time T .

The shorter the target time T , by which all other follower firms are forced to exit,

the higher the “predatory” R&D investment has to be. In other words, the level

of optimal R&D investment decreases with an increase in target time. (Note that

it is not viable by assumption to force an immediate exit of all other firms, since

it would then require an infinite amount of R&D, when the speed of adjustment is

finite.)

(d) Once all rivals are eliminated, the leader may continue to further increase its R&D

investment and become a so-called unconstrained monopolist. Alternatively, the

leader may behave as a constrained monopolist that keeps its investment at a low
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level just high enough to prevent rivals from re-entering the market. Neverthe-

less, such an investment level is still higher than the one observed in the case of

accommodation.

(e) Regarding social welfare considerations, we show that the social planner choosing

the flow of R&D investment to maximize the sum of profit and consumer surplus

while keeping the market structure unchanged also prefers strategic predation to

accommodation when its R&D efficiency is “large” and/or the size of the setup

costs relative to the size of the market is large. Moreover, the social planner would

prefer a longer predation time than the profit-maximizing leader if the combination

of R&D efficiency and the relative size of fixed costs is below a certain threshold

curve. On the other hand, the social planner can be more aggressive than the leader

in the sense that the planner prefers a shorter predation time if another threshold

curve is surpassed (this threshold corresponds to the situation when both R&D

efficiency and the relative size of fixed costs are large).

The remainder of the paper proceeds as follows. The static model is analyzed in

Section 2. Section 3 introduces the dynamic model. In the subsequent sect ions we study

the leader’s strategies of accommodation (Section 4) and strategic predation (Section 5).

Section 6 provides a comparison of these strategies and determines the leader’s optimal

behavior in the long run. Section 7 presents the welfare analysis, where we contrast the

leader’s investment decision with that of the social planner. Section 8 concludes and

discusses the potential policy implications of our results.

2 Static Model

2.1 Equilibrium with Endogenous Entry

In this section we describe the market game with endogenous entry that has been recently

brought into attention by Etro (2004, 2006, 2007). We consider a market for a single ho-

mogeneous good. The good is produced by one leader firm (indexed by 0) and potentially

also by several identical follower firms (indexed by i = 1, 2, . . . ). Following Etro (2007),

we assume that firms compete in quantities with endogenous entry. The game involves

two stages so far. In the first stage all firms simultaneously decide whether to be active

in the market or not. By being active, a firm incurs fixed setup costs F that are sunk

later; not being active does not involve any costs. In the second stage, all active firms

compete in quantities à la Cournot (see Etro, 2007 for details). The equilibrium of such

a game is sometimes called Marshall equilibrium (see Etro, 2007) and is characterized

by the number of followers that become active, their optimal outputs and the optimal

output of the leader. The equilibrium number of active followers is the maximal one yet
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delivering non-negative profits in the subsequent Cournot competition. If even only one

follower is not able to earn a positive profit, the leader is the only firm active and becomes

a monopolist (we assume that the leader is able to earn a non-negative profit).

Production in the second stage involves unit variable costs: all followers produce the

good at constant unit (variable) costs c̄, whereas the leader produces the good at constant

unit (variable) costs c0, where c0 ≤ c̄. The leader’s unit costs may be lower than c̄ due to

previous R&D investments.4 Note that the leadership in our setup implies the existence

of an incumbent firm rather than the firm having a standard first-mover advantage. That

incumbent firm is the only one assumed to be capable of investing in innovation. Thus,

in a sense, our leader firm acts as a technological rather than Stackelberg leader.

In the following sections we embed this model into a static model (Section 2.2) and

a dynamic model (Section 3) that specifically describe the leader’s R&D investments

decisions. Via R&D investment, the leader firm can affect its unit costs and thus —

indirectly — the number of followers. Therefore, we first extend the model to a three-

stage (static) setup by introducing an initial stage in which the leader decides on an R&D

investment that lowers its unit costs. Later on we consider a dynamic model where the

number of active followers as well as their outputs adjust instantaneously to the change

in the leader’s unit costs so that the market is in Marshall equilibrium at every point in

time. The leader solves a dynamic optimization problem with its unit costs being a state

variable following a certain law of motion and with investment being a control variable.

We consider a linear inverse demand function: p = A−Q, where Q denotes the market

demand and A− c̄ captures the size of the market (where A > c̄). If n is the number of

followers active in the second stage, then in the Cournot equilibrium the output of the

leader q0 and the output of each follower qi (for i = 1, . . . , n) appear to be

q0 =
A− c̄+ (n+ 1)(c̄− c0)

n+ 2
and qi =

A− c̄− (c̄− c0)

n+ 2
.

The leader’s and the followers’ (gross) profits are then Π0 = q2
0 and Πi = q2

i , respectively.

In equilibrium, the number of active followers satisfies the zero-profit condition Πi =

F , where F are fixed costs incurred in the first stage and sunk later. Thus each follower’s

equilibrium output is equal to qi =
√
F and the equilibrium number of followers is

n =
A− 2c̄+ c0√

F
− 2. (1)

For simplicity and tractability purposes, we use a continuous variable to approximate

the number of followers. More specifically, we assume that n can take values from the

interval [1,∞) or be equal to 0, where the latter means that all followers are crowded out

4For simplicity, we refer to these costs as “unit costs”, instead of the more appropriate term “unit
variable costs”.
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from the market and the leader is a monopolist.5

Taking the zero-profit condition into account, a direct computation then yields the

following equilibrium quantities and price (in the case of entry):

q0 = c̄+
√
F − c0, qi =

√
F , p = c̄+

√
F . (2)

In the case of no entry, the leader becomes a monopolist, setting the monopoly quantity

qM = 1
2
(A − c0) that results in the monopoly price pM = 1

2
(A + c0) and generates the

monopoly profit of ΠM = q2
M .

Now, entry occurs when n ≥ 1 in equilibrium. As follows from (1), the latter condition

is equivalent to

c0 > ĉ, where ĉ = −A+ 2c̄+ 3
√
F . (3)

If the reverse inequality strictly holds, the leader becomes a monopolist.6 The value

ĉ = −A + 2c̄ + 3
√
F thus represents a critical value of the leader’s unit costs that

determines the resulting market structure. If the leader’s costs are sufficiently high, i.e.,

the gap between the leader and the followers is sufficiently small, entry occurs with the

number of entrants increasing in the leader’s costs. On the other hand, if the leader’s

costs fall below this critical value, the leader becomes a monopolist.

Note also that in the symmetric case when c0 = c̄ (without any prior investment),

entry occurs if and only if Φ ≤ 1
3
, where

Φ =

√
F

A− c̄
.

In other words, to allow entry, fixed costs need to be sufficiently small relative to the size

of the market. Otherwise, entry never occurs in equilibrium. Thus, in what follows, we

will restrict our analysis to the case Φ ≤ 1
3
.

2.2 Leader’s Investment Decision

In this section we add an initial stage to the game and consider a game where the (Mar-

shall) equilibrium with endogenous entry is preceded by an investment stage. We further

assume that the leader has ex-ante identical unit (variable) costs with the followers. Thus,

5When n is defined as in (1) and n ≥ 1, then the “actual” number of active followers is equal to the
(unique) integer that lies in the interval (n− 1, n].

6If c0 = ĉ, there is only one active follower who is actually indifferent between being active or not.
At this point, both the leader’s quantity and profit (as functions of c0) have a jump downwards. More
precisely, the limits of the leader’s quantity (when c0 approaches ĉ) from the left and from the right are
q̂0 = A − c̄ − 2

√
F and q̂M = A − c̄ − 3

2

√
F , respectively. Thus, when c0 is the outcome of a preceding

R&D investment, in equilibrium the leader also becomes a monopolist for c0 = ĉ. In other words, the
leader’s equilibrium profit is continuous in c0 from the right.
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without any investment, its unit costs are c0 = c̄. In other words, initially all firms have

access to the old technology, implying that the initial level of both fixed and unit costs

are the same for all firms. We, however, assume that the R&D investments of the leader

do not affect its fixed costs but only its unit costs.

In order to describe the effects of R&D investments, we employ a simple R&D produc-

tion function where the leader lowers its unit costs by
√
gx if it invests an amount of x

(see Chin and Grossman, 1990, or Žigić, 1998 for the use of such a function). The variable

x represents the level of R&D expenditures that are incurred in the investment stage and

sunk later. The parameter g describes the efficiency of the R&D process; we assume that

g ∈ (0, 4) where the upper bound is determined by the positivity requirement imposed on

the monopoly output and investments in the equilibrium. For convenience we introduce

the transformation x = z2 and in what follows use x and z interchangeably to refer to

investment size or investment level. In this notation, after investing the amount of z2,

the leader’s unit costs become

c0(z) = c̄−√g z (4)

for z ∈ [0, c̄/
√
g].

The resulting market structure depends on the size of the leader’s investments. Com-

bining (3) and (4), we find that if the leader’s investment level z is below the threshold

ẑ, i.e.,

z < ẑ, where ẑ =
c̄− ĉ
√
g

=
A− c̄− 3

√
F

√
g

,

then c0 > ĉ and entry occurs, where the equilibrium values are given by (1) and (2). In

such a case, we say that the leader chooses an accommodation strategy. Alternatively,

the leader may choose an investment level z ≥ ẑ (or, equivalently, c0 ≤ ĉ) that leads to a

monopoly. In such a case, we say that the leader chooses a strategic predation strategy.

The leader maximizes its net profit q2 − z2 − F , where q = q0 for c0 > ĉ, q = qM for

c0 ≤ ĉ, and the relation between investments and unit costs is given by (4). In the case

of accommodation, the optimal level of investment and the resulting equilibrium output

of the leader are

z∗A =

√
g

1− g

√
F and q∗A =

1

1− g

√
F ,

which allows for the entry of n∗ = 1
Φ
− 2−g

1−g
followers. Entry occurs if and only if zA does not

exceed ẑ (or n∗ ≥ 1). We may rewrite this condition as Φ ≤ φA(g), where φA(g) = 1−g
3−2g

.

Note that the necessary condition for accommodation is g < 1. If g ≥ 1, then the leader’s

accommodation profit is increasing in z on [0, ẑ). In this case, accommodation is not
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optimal; the leader chooses z ≥ ẑ and becomes a monopolist.

Analogously, in the case of strategic predation, the optimal level of investment and

the leader’s output are

z∗M =

√
g

4− g
(A− c̄) and q∗M =

2

4− g
(A− c̄).

Reasoning as above, we conclude that the leader becomes a monopolist if and only if z∗M
(weakly) exceeds ẑ, which is equivalent to Φ ≥ φM(g), where φM(g) = 2(2−g)

3(4−g)
.7 In such

a case, the leader’s profit is decreasing in z. Because the profit has a jump upwards in

z = ẑ, the leader’s profit may also be maximized at this point, leading to a monopoly

with output q̂M = A− c̄− 3
2

√
F (see footnote 6). In this case the leader actually chooses

a minimal investment level that prevents the followers from entering (i.e., z = ẑ) and

becomes in some sense a constrained monopolist.

A comparison of the resulting profit with the profit from accommodation reveals that

accommodation is optimal if and only if

(
1− 3− 2g

1− g
Φ
)√1− g

g
>

√
Φ
(
1− 7

4
Φ
)
. (5)

Note that inequality (5) holds for Φ = 0, whereas for Φ = φA(g) its sign is reversed because

the left-hand side of (5) vanishes. Direct computation yields that for any g ∈ (0, 1) there

is a critical value of Φ, namely φ0(g) = 2(1 − g)(6 −
√

5g − 3g)/(36 − 41g + 9g2), such

that the leader chooses accommodation if and only if Φ lies below this critical value.

Figure 1 shows the regions of parameters g and Φ, where accommodation (region

A) and strategic predation (the union of regions CM1, CM2, and UM) are chosen by

the leader.8 For Φ close to 1
3
, the leader chooses strategic predation with the optimal

monopoly investment. When the entry costs decrease (Φ surpasses the threshold φM(g)),

then the optimal monopoly investment leads to entry. In this case the leader becomes a

constrained monopolist choosing the minimal investment level z = ẑ that still prevents

the followers from entering. For even lower fixed costs (when Φ ≤ φ0(g)), the leader

chooses the accommodation strategy.

7Note also that the above results require g < 4. If g ≥ 4, the leader’s profit is increasing in z on
(ẑ,∞) and converges to infinity when z → ∞. Thus, in order to ensure the existence of the maximum,
we assume g < 4. Moreover, economic relevance requires that the unit costs remain positive, i.e., c∗M > 0
or equivalently g < 4c̄/A (where 4c̄/A < 4). As all our results will actually be formulated only in terms of
the size of the market A− c̄ and not in terms of A and c̄, we omit this condition from further elaborations.
This is without loss of generality, as for any size of the market and any g ∈ (0, 4), we can find values of
A, c̄ that yield such a size of the market and satisfy the inequality g < 4c̄/A < 4.

8Recall that the feasible parameter values are (g,Φ) ∈ (0, 4)× (0, 1
3 ].
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Figure 1: Leader’s optimal strategies in the static model (parameter values A = 5, c = 4)

3 Dynamic Model

Building upon the static model, we consider a setup in which all firms may operate over

an infinite time horizon (in continuous time). Much like in the static setup, we assume

that there is one leader firm (indexed by 0), and several potential follower firms indexed

by i = 1, 2, . . . . Note that now each active firm needs to incur the production costs

at each moment of time. These costs comprise of instantaneous fixed costs F and unit

(variable) costs c. We assume that initially (at time t = 0), all firms are identical and

have unit costs c0(0) = ci(0) = c̄. The leader makes an investment that affects its unit

costs; the followers make no investment and their unit costs are constant over time, i.e.,

ci(t) = c̄ for all t ≥ 0.

In order to build a genuine dynamic model, we now consider a law of motion that

drives the change in the leader’s unit costs, depending on its investment. Denoting the

time path of the leader’s investment as x(t) = z2(t) (where z(t) ≥ 0), we assume that its

unit costs change according to the following law of motion

ċ0(t) = µ[c̄− c0(t)−
√
g z(t)], (6)

that resembles specification (4) of the static model in Section 2.2. In particular, we

assume that it takes time for the R&D investment to transform into a decrease in unit

costs and we introduce the speed of adjustment parameter µ > 0 designed to capture this

time lag (more precisely, the inverse of it). In this respect our model closely follows that

of Stenbacka and Tombak (1997); see also Fershtman and Kamien (1987) for a similar

approach.9 The parameter g characterizes the efficiency of the R&D process; we assume

that g ∈ (0, 4ρ) where ρ = 1 + r/µ ≥ 1, due to the requirement for monopoly output and

9Kobayashi (2001) made a differential game version of the D’Aspremont and Jacquemin (1988) two-
stage game, where the dynamics of the model stems from a depreciation of R&D stock rather than from
the speed of adjustment.
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investment to be positive in the dynamic context (see Section 5.3). The expression ρ− 1

can then be viewed as a so-called “generalized discount rate”, that is, the interest rate r

corrected by the speed-of-adjustment coefficient: Given r, the higher the level of µ, the

faster R&D investment materializes, and the more important the future becomes. The

parameter ρ will turn out as particularly relevant for the leader’s intertemporal decisions.

Note that the above law of motion requires sufficient perpetual investments in order to

prevent the unit costs from increasing. If the investment is not sufficient, the costs tend

to revert back to their initial value c̄. In particular, in the absence of R&D investment,

the costs will converge to c̄ when t→∞. The latter can be interpreted as some kind of

depreciation of knowledge or skills.10

Given the leader’s unit costs c0(t) as a state variable, at each point in time the market

follows the equilibrium with endogenous entry (see Section 2.1), where the number of

active followers as well as the leader’s output adjust instantaneously. Note that only

the leader’s investment decision involves intertemporal trade-offs. In this respect, the

explicit dynamics in the model comes from the leader’s intertemporal R&D investment

decision and not from the competition in quantities. The latter is myopic in nature since

both the leader and the followers determine their outputs via Cournot-Nash equilibrium

at each instant of time rather than committing in advance to a particular output path.

These instantaneous equilibria are however critically determined by the R&D flow that

the leader has under its control. Our approach is thus in a sense a generalization of the

related static models at which the R&D of the leader at an initial stage of the game

affects the output and number of firms at subsequent stages of the game.

As for the number of followers, n = n(t) is now a time-specific variable and it is

determined by the law of motion of the unit costs. The intuition for it is that a change in

production technology and the speed of its adoption are key factors governing the change

in the efficiency of the technological leader and through this it affects the dynamics of new

firms’ entry into the market. Consistent with this, the change of unit costs and its speed

(aimed to capture the change and dynamics of technology improvement) fully determines

the number of firms and their dynamics in our model. The dynamics (law of motion) for

the number of firms and the leader’s output can be derived from the equilibrium relations

(1) and (2) by taking their time derivatives, ṅ(t) = 1√
F
ċ0(t) and q̇0(t) = −ċ0(t). After

substituting for c0 and ċ0 into the law of motion (6) we obtain:

ṅ(t) = µ
[A− c̄− 2

√
F√

F
− n(t)−

√
g

√
F
z(t)

]
, (7)

q̇0(t) = µ[
√
F − q0(t) +

√
g z(t)], (8)

whenever entry occurs, that is, n(t) > 1. Since all firms are identical at time t = 0

10The expression µ[c̄− c0(t)] then corresponds to the instantaneous depreciation rate.
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(i.e., c0(0) = ci(0) = c̄ for all i), it follows from (1) and (2) that the initial leader’s

equilibrium output is evaluated as q0(0) =
√
F , and the initial number of followers equals

n(0) = 1
Φ
− 2.

3.1 Leader’s Optimization Problem

The leader maximizes the present value of its (net) profit and solves the following infinite

horizon optimal control problem with one state variable c0 and one control variable z:

max
z(·)

∫ ∞

0

[q2(t)− z2(t)− F ]e−rtdt (L)

subject to

ċ0(t) = µ[c̄− c0(t)−
√
g z(t)],

q(t) =

{
q0(t), if c0(t) > ĉ,

qM(t), if c0(t) ≤ ĉ,

c0(0) = c̄.

This problem involves a “regime change” that occurs when the leader’s costs attain the

critical value ĉ = −A+ 2c̄+ 3
√
F . If the leader’s costs are above ĉ, at least one follower

is active, and the leader’s output equals q0(t) = c̄ +
√
F − c0(t) as in the equilibrium

with endogenous entry. If the leader’s costs fall below the critical value, it becomes a

monopolist producing output qM(t) = 1
2
[A− c0(t)].

There are several points worth noting. First, the leader’s optimization problem does

not explicitly contain the number of followers, which is, however, endogenous and follows

the law of motion (7). Second, fixed costs F in the leader’s objective function are incurred

over the whole time span (and integrate up to F/r) independently from the leader’s

investment decision, and thus can be in principle omitted. However, for the sake of

completeness we will always include them in the objective function. Third, the leader

always has the option not to invest at all, in which case it will be identical to the followers

and earn zero profit. Finally, initially there is always at least one active entrant, because

c̄ > ĉ (or, equivalently, Φ < 1
3
). However, the current number of active followers is neither

bounded from above nor assumed to be strictly positive, and depends on the exogenously

given parameters A, c̄, F and g, and on the endogenously determined investment strategy

z(t) (in particular, n(t) does not change if n(t) = 1
Φ
− 2−

√
g√
F
z(t)).

Depending on whether the leader eventually becomes a monopolist, we classify its

strategies into the following two categories:

1. Accommodation: The leader invests only moderately in R&D so that at least one

active follower exists at any point in time, i.e., n(t) > 1 for all t ≥ 0. In this case,

the leader’s costs always lie above the threshold ĉ.
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2. Strategic predation: The leader invests significantly in R&D in order to eventually

eliminate all followers and achieve a monopoly position, i.e., n(T ) = 1 at a finite

point in time T . In this case, the leader’s costs attain the critical value ĉ at time T .

Note that accommodation may also involve the elimination of some (but not all) followers.

According to our classification, in accommodation there is at least one active follower at

any point in time.

It is important to recognize that in the case of strategic predation, insufficient R&D

investment may in principle result in the eventual reversal of the leader’s costs to the

critical level ĉ and even above it, allowing some of the followers to re-enter the market.

However, such a pattern is never optimal because the problem involves an unbounded

time interval, and, therefore, the problem is “shift invariant”, i.e., the optimal value of

control z depends directly only on the state c0 and not on the physical time t.11 Thus, if

the leader’s unit costs attain the same value at two distinct points in time, the subsequent

investment patterns in both cases should be identical. The latter excludes the possibility

that (under optimal investment) the leader’s costs revert back to the value ĉ once they are

lower than ĉ.12 Of course, the same argument holds for any value of costs, which means

that the leader’s costs are non-increasing in optimum. Moreover, if the leader’s costs stay

constant over a certain time interval, then they also remain unchanged afterwards. The

above argument also implies that in optimum, the leader’s output is non-decreasing and

its R&D investment is always positive.

Compared to the static model, the time dimension enriches the set of strategies avail-

able to the leader. In particular, in the case of strategic predation, the leader’s investment

decision determines the predation time T when all followers are eliminated. Similarly to

the static model, we solve the problem by separately considering the case of accommo-

dation and the case of strategic predation. Under each strategy we find an optimal in-

vestment pattern. Further, we find conditions under which these patterns are sustainable

and compare the leader’s profits in cases when more strategies are sustainable.

4 Accommodation

Let us first consider the leader’s optimization problem under the accommodation strategy.

In that case, q(t) = q0(t) = c̄+
√
F−c0(t) for all t ≥ 0. Thus, we may rewrite the problem

11Note that our problem is indeed shift invariant despite the objective function being time dependent.
This follows from linearity and from the specific time dependence in the form of discounting.

12Reverting would mean that for some ε, the value ĉ−ε is also attained at two points in time, followed
one time by a decrease and the other time by an increase in the leader’s costs.
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(L) in terms of the leader’s quantity q as a state variable following the law of motion (8):

IA = max
z(·)

∫ +∞

0

[q2(t)− z2(t)− F ]e−rt dt, (A)

subject to

q̇(t) = µ[
√
F − q(t) +

√
g z(t)],

q(0) =
√
F .

In order to solve this problem, we form the Hamiltonian function

H = (q2 − z2 − F )e−rt + ηµ(
√
F − q +

√
g z), (9)

where η is a Lagrange multiplier. The joint dynamics of the state and control variables

is derived from the first-order conditions (see the Appendix for details)13

ż = (r + µ)z − µ
√
g q, (10)

q̇ = µ(
√
F +

√
g z − q). (11)

System (10)–(11) has a unique equilibrium (steady-state):

z∗A =
µ
√
gF

r + µ(1− g)
=

√
g

ρ− g

√
F , q∗A =

(r + µ)
√
F

r + µ(1− g)
=

ρ

ρ− g

√
F , (12)

with the steady-state number of followers and the leader’s unit costs

n∗ =
1

Φ
− 2ρ− g

ρ− g
and c∗A = c̄− g

ρ− g

√
F .

Since z(t) must be non-negative, the equilibrium may arise only in the first quadrant

(i.e., z∗A ≥ 0, q∗A ≥ 0). Therefore, the equilibrium exists if and only if r+µ(1− g) > 0, or

g < ρ. The above method solves the leader’s optimization problem in accommodation as

an unconstrained optimization problem. We, however, also need to verify that the leader’s

unit costs indeed always remain above the critical value ĉ, or equivalently that its output

does not fall below q̂0 = A − c̄ − 2
√
F . In such a case we say that accommodation is

sustainable. By the same argument as in the previous section, the leader’s unit costs

are non-increasing over time under the optimal investment path. Thus, the condition

for sustainability reduces to a simple check of whether the steady-state is sustainable;

formally, c∗A ≥ ĉ (or q∗A ≤ q̂0). To this end, the sustainability condition for accommodation

13Alternatively, the solution can be obtained by making a transformation of (A) as q̃ = e−
1
2 rtq0,

z̃ = e−
1
2 rtz that brings the problem into a standard linear quadratic form, which can be solved using

Theorem 5.16 in Engwerda (2005).
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becomes

g < ρ and Φ ≤ φA(g) =
ρ− g

3ρ− 2g
. (13)

Much like in the static model, the function φA is decreasing and, thus, inequality (13) is

satisfied when g is sufficiently low. In other words, accommodation is sustainable only if

R&D efficiency is not very high.

It is worthwhile to note that the steady-state value of investment monotonically in-

creases, and the steady-state number of followers monotonically decreases in µ. More-

over, when the adjustment becomes instantaneous (µ→∞), the steady-state values of all

variables coincide with their static counterparts. Also, condition (13) reduces to the sus-

tainability condition in the static model. Thus, the static model serves as a good long-run

approximation of the dynamic one for industries that are subject to rapid technological

change. However, when the speed of adjustment becomes smaller, we may expect lower

investments as well as a higher number of firms in the long run.

If g < ρ, then the eigenvalues of the system (10)–(11) are real and of opposite sign

(i.e., the equilibrium is a saddle). The existence of a unique equilibrium then implies

the existence and uniqueness of an optimal path of R&D and output converging to this

equilibrium. Using the initial condition together with the transversality condition, it is

straightforward to obtain the following closed-form solution for the joint dynamics of

R&D investment and output (see the Appendix for technical details and Figure 2 for an

illustration):

zA(t) = z∗A −
g

ρ− g

√
F ·

ρ+ 1−
√

(ρ+ 1)2 − 4g

2
√
g

eλAt, (14)

qA(t) = q∗A −
g

ρ− g

√
F eλAt, (15)

where λA = 1
2

[
ρ − 1 −

√
(ρ+ 1)2 − 4g

]
µ is the negative eigenvalue of the system (10)–

(11). The price is constant over time and equals c̄ +
√
F , which is the equilibrium price

(see Section 2.1), independent on the leader’s unit costs. Note that the optimal R&D

investment (14) as well as the leader’s output monotonically increase over time towards

its steady-state value. Higher values of µ are associated with a higher steady-state value

of investments and faster convergence towards the steady-state (i.e., higher absolute value

of λA).14 The intuition is that a higher rate of transformation of R&D inputs into lower

unit costs (higher µ) decreases the time gap between the R&D investment and its benefits

expressed in terms of future profits. If adjustment takes place instantaneously (µ→∞),

then q(t) ≡ q∗A and z(t) ≡ z∗A, as predicted by the static model.

14Note that due to the condition g < ρ = 1 + r
µ , the inequality g < 1 is necessary in order to have the

set of feasible values of µ unbounded.

16



Now it is technically possible to evaluate the leader’s maximal profit in closed form

as IA =
∫∞

0
[q2

A(t) − z2
A(t) − F ]e−rt dt. The resulting expression is, however, rather com-

plicated and will not be provided here. As a special case note that if the adjustment

is instantaneous, the leader’s maximal profit becomes
∫∞

0
[(q∗A)2 − (z∗A)2 − F ]e−rt dt =

1
r
[(q∗A)2− (z∗A)2−F ] = g

(1−g)r
F . Note also that, unlike in the case of an exogenously given

number of followers, the leader’s profit increases in the fixed costs F , because larger F

leads to less entry and thus enables the leader to enjoy a higher profit.

0 T*
t

qA
*

1

q

qCM

qA

qP

0 T*
t

zA
*

1

z

zCM

zA

zP

Figure 2: Patterns of q and z in accommodation and strategic predation (example for
A = 5, c = 4, r = 0.05, g = 0.8, F = 0.0225, µ = 0.2; which implies Φ = 0.15, ρ = 1.25)

5 Strategic Predation

Strategic predation involves two phases. In the first phase, the predation phase, the

leader invests in R&D in order to gradually decrease the number of followers. If it aims

to eliminate the followers rather early, it may even incur temporary losses. When the

leader’s costs eventually fall to the level ĉ at time T , it becomes a monopolist. In the

second phase, the monopoly phase, the leader enjoys the monopoly position. At time T ,

the leader faces two options. First, it may decide to keep its unit costs at the level ĉ that

will just prevent the follower(s) from entering the market.15 In such a case, the leader is

constrained by the presence of potential followers and we call the resulting arrangement a

constrained monopoly. Second, the leader may continue to lower its costs further. In this

case the leader won’t be constrained by the presence of potential followers anymore; we

call this arrangement an unconstrained monopoly. Recall that in Section 3.1 we argued

that the leader’s unit costs are non-increasing in optimum. Thus, it is not optimal for

the leader to allow the re-entry of followers after having achieved the monopoly position.

This way persistence of monopoly arises endogenously, due to enduring investments in

15When c0(t) = ĉ, there is actually only one active follower. However, as we argued in footnote 6, by
slightly increasing investment, the leader gains a monopolistic position, which raises its profit significantly
(due to the jump upwards). Thus, in the equilibrium, the leader will become a monopolist even with
c0(t) = ĉ.
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R&D that do not vanish once the leader has achieved the monopoly position. Note also

that in both the constrained and the unconstrained monopoly, the leader indeed chooses

the monopoly output given its current costs. Thus, the concept of “constrained” rather

applies to whether its investment decision is affected by the presence of potential followers.

We find the optimal investment path under strategic predation in three steps:

1. We solve the predation phase. Given the predation time T , we find the optimal

path of R&D on the interval [0, T ] that leads to the elimination of all followers by

time T . Let IP (T ) denote the corresponding present value of the leader’s profit.

2. We solve the monopoly phase. Given that all followers are eliminated at time T , we

find the optimal path of R&D on the interval [T,∞) under unconstrained as well

as constrained monopoly. Let IM(T ) and ICM(T ) denote the corresponding present

values of profits (evaluated at time T ).

3. We maximize profits IP (T ) + e−rT IM(T ) and IP (T ) + e−rT ICM(T ) with respect to

the predation time T .

5.1 Predation Phase

In this section we solve for the first step of the optimization problem listed above. If the

leader firm sets the objective to eliminate all its rivals at time T , its output should attain

the critical value q̂0 = A− c̄− 2
√
F at time T , whereas the market is in equilibrium with

endogenous entry before time T . This imposes an additional terminal condition on the

leader’s output. The leader thus solves the following optimization problem:

IP (T ) = max
z(·)

∫ T

0

[q2(t)− z2(t)− F ]e−rt dt, (P )

subject to

q̇(t) = µ[
√
F − q(t) +

√
g z(t)],

q(0) =
√
F , q(T ) = A− c̄− 2

√
F .

The problem (P ) is indeed very similar to (A); it differs only in the additional terminal

condition q(T ) = q̂0 = A − c̄ − 2
√
F at time T , that is equivalent to c0(T ) = ĉ, or

n(T ) = 1. Thus, we again obtain Hamiltonian (9) and equations (10)–(11) that drive

the joint dynamics of R&D and output. However, instead of applying the transversality

condition, we use the terminal condition to solve these equations; see the Appendix for

details as well as the closed-form solution. Figure 2 illustrates the optimal dynamics of q

and z in predation. Note that Figure 2 presents the case when the leader indeed makes
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instantaneous losses during the predation phase, because its gross profit does not cover

the R&D investments whenever qP (t) < zP (t).

Similarly to the accommodation case, we can then evaluate the optimal profit IP (T )

associated with the predation phase that lasts up to a given time T , as IP (T ) =
∫ T

0
[q2

P (t)−
z2

P (t)−F ]e−rt dt. Again, we will not provide the explicit formula; it can be easily computed

from the solution in the Appendix. Note, however, that with instantaneous adjustment

(µ→∞), the optimal predation profit becomes similar to the one from the accommoda-

tion case
∫ T

0
[(q∗A)2−(z∗A)2−F ]e−rt dt = 1

r
(1−e−rT )[(q∗A)2−(z∗A)2−F ] = g

(1−g)r
(1−e−rT )F .

Let us now study comparative dynamics of the leader’s optimal investment path.

In addition to the comparisons with respect to µ, as in the preceding section, we are

interested in the comparative results with respect to predation time T . Such results then

help us to assess properties of the overall profit with respect to T .

Intuitively, if the speed of adjustment µ increases, predation becomes easier and re-

quires lower investment. Thus, we might expect the profit from predation to be increasing

in µ. Similarly, an increase in predation time T should lead to a lower investment and

a lower output, which consequently increases profit. When the predation time becomes

very long, the leader’s behavior in predation should be close to that in accommodation.

This, in particular, means that in the predation phase the leader indeed invests more

than in accommodation.

The above intuition as well as the additional comparative dynamics results are sum-

marized in the two lemmas below.

Lemma 1. Assume that accommodation is sustainable, i.e., Φ < φA(g). Then, zP (t) and

qP (t) are increasing over time, but are decreasing in the predation time T and converge

pointwise to zA(t) and qA(t) as T →∞.

Proof. See the Appendix.

In the following lemma we provide comparative dynamics results for the optimal

predation profit IP (T ). In order to compute its derivative with respect to the predation

time T , we use the dynamic version of the Envelope theorem (see Theorem 10 in Seierstad

and Sydsaeter, 1987, p. 213) which claims that:

d
dT
IP (T ) = H∗(T ), (16)

where H∗(T ) is the Hamiltonian of the accommodation problem with predation time T ,

evaluated under optimal q and z, and for t = T . This property turns out to be very

handy in several places where we address the optimal predation time.

Lemma 2. Assume that accommodation is sustainable, i.e., Φ < φA(g). Then the optimal

profit from the predation phase IP (T ) is increasing and concave in T , and converges to

IA as T →∞. Moreover, IP (T ) is increasing in the speed of adjustment µ.
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Proof. See the Appendix.

5.2 Constrained Monopoly

In this section we search for the optimal investment path under a constrained monopoly.

Assume that the leader’s unit costs reach value ĉ at time T (i.e., all followers are eliminated

by T ) and the leader chooses to behave as a constrained monopolist. Thus, at time T , after

the elimination of all followers the leader increases its output by 1
2

√
F to the monopoly

quantity qM(T ) = q̂M = A − c̄ − 3
2

√
F . At the same time the total output decreases by

1
2

√
F and the price increases by 1

2

√
F to the monopoly price pM(T ) = 1

2
(A+c̄) = c̄+ 3

2

√
F .

After time T , the leader does not lower its costs below ĉ, but rather invests just as

much as to keep its costs constant in order to prevent the followers from re-entering the

market. As an outcome, the monopoly will persist over time. Setting ċ0 = 0 and c0 = ĉ

in the law of motion (6) we find that the investment and output are constant over time

on [T,∞) and are equal to

zCM =
A− c̄− 3

√
F

√
g

, (17)

qCM = q̂M = A− c̄− 3
2

√
F . (18)

The equations above represent a corner solution and are analogous to those in the static

model case with z = ẑ. They indeed yield the same investment and output levels. Also

note that the above path of z and q depends neither on the predation time T , nor on

the speed of adjustment µ. It is straightforward to verify that zCM > z∗A, which implies

that in strategic predation with constrained monopoly the leader invests more than in

accommodation, not only in the predation phase, but also after all rivals are eliminated.

The leader’s profit ICM(T ), evaluated at time T , also does not depend on the predation

time T and is equal to

ICM =
q2
CM − z2

CM − F

r
.

Finally, let us find the optimal predation time T that maximizes the overall profit

IP (T ) + e−rT ICM . This problem represents the trade-off between incurring high costs

in order to eliminate all followers early, or delaying high constrained monopoly profits

when the followers are eliminated later. Recall that according to Lemma 2, the optimal

profit from the predation phase is increasing in T . Early elimination (i.e., low T ) leads to

instantaneous losses (that is, negativity of instantaneous net profit) caused by high R&D

investments in the predation phase. These losses are compensated in the monopoly phase

when all rivals are eliminated. On the other hand, when elimination is delayed (i.e., T is
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high), the leader postpones the high profits earned in the constrained monopoly phase,

but also invests only moderately in R&D during the predation phase.

The optimal value of T can be computed from the first order condition. Using (16),

we obtain the derivative of the leader’s overall profit

d
dT

[IP (T ) + e−rT ICM ] = H∗(T )− re−rT ICM .

However, the resulting first order condition (with T as unknown) is not solvable analyt-

ically (unless µ → ∞). Nevertheless, we are not directly interested in the magnitude of

the leader’s profit or the precise value of the predation time T , but in its choice between

accommodation and strategic predation. Recall that when accommodation is sustainable,

then IP (T ) → IA as T → ∞. Thus, also IP (T ) + e−rT ICM → IA as T → ∞. Thus, the

leader chooses strategic predation over accommodation, if and only if IP (T ) + e−rT ICM

attains its maximum at a finite time T .

As an illustration, we analyze first the case of µ → ∞ (instantaneous adjustment).

Then, the leader’s profit from the predation strategy equals 1
r
(1− e−rT )[(q∗A)2 − (z∗A)2 −

F ] + 1
r
e−rT [(q∗CM)2 − (z∗CM)2 − F ]. It increases in T if (q∗A)2 − (z∗A)2 > (q∗CM)2 − (z∗CM)2,

and decreases in T when the opposite inequality holds. In the former case, the leader’s

profit does not attain its maximum and the leader chooses accommodation. In the latter

case, the optimal predation time is 0; the leader takes advantage of the instantaneous

adjustment and eliminates all rivals immediately at T = 0. In both cases, its profit then

becomes identical to the static profit, except for the factor 1
r
, and the above inequality is

actually equivalent to (5) in the static model.

In the general case of a finite µ we obtain the following proposition:

Proposition 1. The leader chooses accommodation over strategic predation with con-

strained monopoly, if and only if

(
1− 3ρ− 2g

ρ− g
Φ
)
ψ(g) >

√
Φ
(
1− 7

4
Φ
)
, (19)

where ψ(g) = 1
2
√

g
[ρ− 1 +

√
(ρ+ 1)2 − 4g] > 0.

Proof. See the Appendix.

Inequality (19) holds if Φ = 0, and the opposite inequality is true if Φ = φA(g).

Similarly to the static case, we find that for any g ∈ (0, ρ), there is a critical value of Φ,

denoted φ0(g), such that the leader chooses accommodation if and only if Φ < φ0(g). This

critical value is such that (19) holds with equality and satisfies the inequality φ0(g) <

φA(g) for all g ∈ (0, ρ).

Consistently with the above analysis, (19) reduces to (5) when µ → ∞. In addition,

the left-hand side of (19) is decreasing in µ. Therefore, the size of the region where
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accommodation is chosen increases as µ decreases. This result is intuitive since lower

values of µ make predation slower and more expensive.

5.3 Unconstrained Monopoly

Again, assume that the leader’s unit costs become equal to the value ĉ at time T , and the

leader chooses to behave as an unconstrained monopolist by lowering its unit costs below

ĉ. In that case, the leader can again set the monopoly quantity qM(t) = 1
2
[A− c0(t)] after

time T . Equation (6) implies that after time T , the leader’s output follows the law of

motion

q̇M(t) = µ[1
2
(A− c̄)− qM(t) + 1

2

√
g z(t)],

with the initial condition qM(T ) = q̂M . This initial condition is identical to that in the

constrained monopoly case, and does not depend on time T . The law of motion and the

leader’s net (instantaneous) profit do not depend on T , either. Thus, the optimal path

of investment after time T does not depend on time T itself. In other words, the leader’s

profit from unconstrained monopoly IM(T ), evaluated at time T , also does not depend

on T and can be written as

IM = max
z(·)

∫ ∞

0

[q2(t)− z2(t)− F ]e−rt dt, (M)

subject to

q̇(t) = µ[1
2
(A− c̄)− q(t) + 1

2

√
g z(t)],

q(0) = A− c̄− 3
2

√
F .

Using a similar procedure as developed in Section 4 (see the Appendix for clarifications),

we obtain a system of two differential equations analogous to (10)–(11). The equilibrium

values of this system are derived as

z∗M =

√
g

4ρ− g
(A− c̄), q∗M =

2ρ

4ρ− g
(A− c̄).

Thus, we obtain the steady-state value of the leader’s unit costs as

c∗M = c̄− g

4ρ− g
(A− c̄).

Recall that the set of values of g has been restricted earlier to the interval (0, 4ρ). The

expression for c∗M provides a justification for such a restriction: It requires the monopoly
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output to be positive.16 Similarly to the accommodation problem, we also need to verify

whether under the optimal investment path, the leader’s costs do not exceed the critical

value ĉ, which would lead to the re-entry of followers. In such a case, we again say that

unconstrained monopoly is sustainable. The condition for sustainability thus becomes

c∗M ≤ ĉ, or equivalently

g < 4ρ and Φ ≥ φM(g) =
2(2ρ− g)

3(4ρ− g)
.

Clearly, the function φM(g) is decreasing for g ∈ (0, 2ρ), implying that unconstrained

monopoly is sustainable only when the R&D efficiency g is sufficiently high. Moreover,

as φM(g) > φA(g) for all g > 0, there are no values of parameters for which both

accommodation and unconstrained monopoly are sustainable. In addition, as the invest-

ment path of constrained monopoly is available in the optimization problem (M), the

leader’s profit from constrained monopoly cannot exceed the profit from unconstrained

monopoly, whenever the latter is sustainable. It follows that unconstrained monopoly is

optimal whenever it is sustainable. Last but not least, note that much like in the case of

constrained monopoly, persistence of monopoly occurs here and is caused by the leader’s

R&D investment that persist even in the monopoly phase.

Finally, as in Section 4, we derive the joint dynamics of the leader’s investments and

output:

zM(t) = z∗M +

[
2ρ− g

4ρ− g
(A− c̄)− 3

2

√
F

]
ρ+ 1−

√
(ρ+ 1)2 − g
√
g

eλM t, (20)

qM(t) = q∗M +

[
2ρ− g

4ρ− g
(A− c̄)− 3

2

√
F

]
eλM t, (21)

where λM = 1
2

[
ρ − 1 −

√
(ρ+ 1)2 − g

]
µ. Note that the condition g < 4ρ implies that

g < (ρ+1)2 and λM < 0. The resulting price can then be computed as pM(t) = A−qM(t).

It follows from the sustainability condition that the R&D investment as well as the

leader’s output are increasing over time, whereas the price is decreasing. Interestingly,

when the R&D efficiency is sufficiently high, namely when Φ > 3
2
φM(g), the leader keeps

investing significantly in R&D so that the monopoly price eventually drops below the

accommodation price, and in the steady-state p∗M < pA.

We can now evaluate the leader’s profit IM =
∫∞

0
[q2

M(t) − z2
M(t) − F ]e−rt dt. The

optimal predation time T can then be found as a maximum of the overall profit IP (T ) +

e−rT IM . Again, this optimization problem is solvable analytically only if µ → ∞. We

omit further elaboration on the optimal predation time and the comparison to accommo-

16At this point we again need to mention that economic interpretation requires c∗M > 0, or equivalently
g < 4ρ c̄/A. By the same argument as in footnote 7 we again omit this condition from further elaborations.
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dation, because as shown above, the sustainability of unconstrained monopoly excludes

the sustainability of accommodation.

6 Accommodation vs. Strategic Predation

In this section, we sum up on the leader’s long-run strategies of accommodation and

strategic predation. First, as argued above (see the preceding section), unconstrained

monopoly is chosen by the leader whenever it is sustainable. Second, constrained monopoly

is chosen when neither accommodation nor unconstrained monopoly are sustainable.

Third, in some subsets of the region of parameters (g,Φ) where accommodation is sus-

tainable, the leader prefers strategic predation with constrained monopoly in the second

phase. More precisely, the set (0, 4ρ)× (0, 1
3
] of admissible values of (g,Φ) can be divided

into four regions with the following market structures (see Figure 3 for an illustration):

• Region UM , where φM(g) < Φ: Accommodation is not sustainable, but uncon-

strained monopoly is. Thus, strategic predation with unconstrained monopoly is

optimal.

• Region CM2, where φA(g) < Φ < φM(g): Neither accommodation nor strategic

predation with unconstrained monopoly are sustainable. Thus, strategic predation

with constrained monopoly is optimal.

• Region CM1, where φ0(g) < Φ < φA(g): Unconstrained monopoly is not sus-

tainable, but accommodation is. It, however, yields a lower profit than strategic

predation with constrained monopoly.

• Region A, where Φ < φ0(g): Accommodation is sustainable and also optimal.

0 1 2Ρ 2 Ρ
g

1�3

F

A

UM
CM1

CM2

ΦM

Φ0

ΦA

Figure 3: Leader’s strategies in the dynamic model (for parameter values A = 5, c = 4,
r = 0.05, µ = 0.2)
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As we have already mentioned, when the adjustment becomes instantaneous, these

regions are identical to the ones found in the static model. On the contrary, when µ

decreases (and, thus, ρ increases) the curves Φ = φ0(g), Φ = φA(g) and Φ = φM(g)

rescale to the right (see Figure 3). This in particular means that region A expands and

accommodation becomes more likely when the rate of the adoption of new technologies

is slower, whereas we might expect more predatory behavior in industries with rapid

technological change. In our interpretation of ρ− 1 as a generalized discount factor, the

future becomes less important when ρ increases. In turn, a heavily discounted future

invites accommodation as a sustainable and also optimal long-run strategy. Thus, ac-

commodation is more likely to become an optimal strategy in the equilibrium. The same

effect arises when the discount rate r increases which again implies that ρ increases. In

the limit case r →∞ we obtain that only accommodation is chosen by the leader (as the

left-hand side of (19) diverges to +∞).

At this point it is important to note that in all cases the equilibrium values of q, z,

as well as prices are homogeneous of degree 1 in (A− c̄,
√
F ). Therefore, in all cases the

equilibrium profits as well as consumer surplus, social welfare, and the present value of

R&D investment are homogeneous of degree 2 in (A − c̄,
√
F ) and can be written as a

product of (A− c̄)2 and some function of Φ (that is independent on both A and c̄). Hence,

any comparison of those variables does not depend on A and c̄; it can depend only on

the parameters g, Φ, µ, and r.

7 Welfare analysis

In this section we analyze the normative aspects of the leader’s strategies. That is, we

compare the social welfare effects of strategic predation vis-à-vis accommodation and

contrast them to an appropriate benchmark that involves the maximization of social

welfare. An obvious benchmark would be the first-best situation, but this is not an overly

interesting or insightful ground for comparison: in this case the government or social

planner would clearly ban the entry of any followers in order to avoid the duplication

of fixed costs and set a price equal to marginal costs (or to the average cost to make

the firm break even). Thus, the only observed strategy would be the second phase of

the predation strategy (note that it would be equivalent to the situation with optimal T

set equal to zero). Moreover, that first-best situation is in general not realistic and not

achievable.

An alternative and, as we claim, more insightful benchmark would be a setup in which

a social planner controls the leader’s R&D investments (and indirectly also the time of

the elimination of the last follower, T ) in order to maximize the social welfare, and does

not interfere with the markets in any other way. In other words, the stage of the game
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in which the firms select quantities as well as the entry stage remain unaltered. We

are particularly interested in the comparison of the choice of strategy (accommodation

vs. strategic predation) by the leader as opposed to the corresponding choice of social

planner. In the case of predation, we also compare the corresponding predation times.

Social welfare consists of firms’ net profits and consumer surplus. In the case of lin-

ear demand considered here, the instantaneous consumer surplus has the simple form

CS = 1
2
(A − p)2, whereby the price p depends on the market structure. Recall that

accommodation as well as the predation phase of strategic predation exhibit (in equilib-

rium) the following two properties: (i) the price is constant and equal to pA = c̄+
√
F ; (ii)

all firms except the leader earn zero profit. Thus, the optimization problems of the leader

and the social planner differ only by an additive constant, namely CSA = 1
2r

(A − pA)2,

in the objective function. This implies that the leader’s investment choice in accom-

modation coincides with the choice of social planner and is, therefore, socially efficient.

Consequently, the output path is the same in both setups (given accommodation).

Now consider strategic predation with constrained monopoly after time T . If we fix

the predation time T , by the same argument as above, the leader’s investment choice

in the predation phase is socially efficient. Moreover, in the second phase after time

T , the investment path is uniquely determined (so that the unit costs remain equal to

ĉ) and, therefore, the R&D expenditures are also socially efficient (given a constrained

monopoly). The price is constant and equal to pCM = c̄ + 3
2

√
F , which is higher than

pA. Thus, the instantaneous consumer surplus in constrained monopoly is lower than in

accommodation. Summing up, in both phases the objective function of the social planner

differs from the leader’s only in an additive constant and (given that predation is followed

by constrained monopoly after time T ) the social planner would undertake exactly the

same R&D investment over time, and consequently have the same output as the leader.

This efficiency argument, however, holds only for an exogenously given market struc-

ture (accommodation or constrained monopoly) and an exogenous (fixed) predation time

T . Both market structures and predation time are part of the leader’s decision process

and are determined endogenously. Thus, for instance, the social planner may indeed

prefer a different predation time than the leader as their maximization problems with

respect to T differ. The socially optimal predation time maximizes

IP (T ) + e−rT ICM + (1− e−rT )CSA + e−rTCSCM , (22)

where CSCM = 1
2r

(A− pCM)2 = 1
2r
q2
CM , whereas the leader’s objective function is merely

IP (T ) + e−rT ICM .

Alike to the leader’s problem, we can analyze the social planner’s choice between

accommodation and strategic predation with constrained monopoly by comparing the

limiting behavior of her objective function (22) as T → ∞. We obtain the following
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proposition that is an analogue of Proposition 1.

Proposition 2. The social planner chooses accommodation over strategic predation with

constrained monopoly, if and only if

(
1− 3ρ− 2g

ρ− g
Φ
)
ψ(g) >

√
1

2
Φ
(
1− 9

4
Φ
)
. (23)

Moreover, in constrained monopoly, when Φ < φA(g), the social planner chooses a longer

predation time than the leader.

The above condition resembles very much the condition for the leader’s choice in

Proposition 1. They only differ in the right-hand sides, which is smaller in (23), meaning

that the social planner chooses accommodation for a larger set of parameters. This,

in turn, implies that there is a region where the leader’s choice is socially inefficient,

that is, (19) holds but (23) does not. This range of parameters represents a rather

small region and is illustrated in Figure 4 by shading. Moreover, we again find that

there exists a critical value of Φ, denoted φ0S(g), such that the social planner chooses

accommodation if and only if Φ < φ0S(g). This critical value makes (23) an equality and

satisfies φ0(g) < φ0S(g) < φA(g) for all g ∈ (0, ρ).

In other words, predation starts to become optimal when either R&D efficiency gets

larger (g rises), or the entry (fixed) costs increase relative to the size of the market

(measured by Φ).17 Thus, these two factors make both the leader and the social planner

more aggressive, tipping in favor of predation, and, hence, aimed for a larger profit and

social welfare, respectively. The leader, however, ignores the impact of R&D investment

on consumer surplus and thus adopts predation for a bit lower combination of g and Φ

(see Figure 4). Regarding the social planner, the social gains from consumer surplus that

comes from the followers’ production still exceed the forgiven future profits from predation

in the shaded region. So the social planner sticks to the accommodation strategy in this

marginal range of parameters.

In the second part of Proposition 2, we claim that the leader would like to eliminate

the followers earlier than is socially optimal. Thus, the leader overinvests in R&D in

order to achieve such a predation time. This also implies that during the predation

period, the number of followers is smaller than would be socially optimal. Again, this

is a consequence of the leader’s ignorance of consumer surplus, making the leader more

aggressive than is socially optimal.

Consider now predation with unconstrained monopoly. Recall that we keep the output

choice unchanged, therefore the monopolist’s output still satisfies q(t) = A − p(t) =
1
2
[A − c(t)]. The corresponding consumer surplus then equals CS(t) = 1

2
q2(t). It is not

17A shift toward predation as an optimal strategy also occurs when, ceteris paribus, the rate of tech-
nology adoption µ increases, causing ρ to fall.
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constant over time and causes a distortion in the optimization problem (compared to

the leader’s problem). As a consequence, the leader’s R&D investment would be socially

suboptimal. The social planner solves a problem similar to (M) but with the objective

function being
∫∞

0
[3
2
q2(t) − z2(t) − F ]e−rtdt. Solving the optimization problem (see the

Appendix for details) we obtain the following sustainability condition:

g <
8

3
ρ and Φ > φMS(g) =

2(4ρ− 3g)

3(8ρ− 3g)
.

Comparing the sustainability of unconstrained monopoly under the leader’s and the so-

cial planner’s optimal investments, we obtain that φMS(g) < φM(g) for all g ∈ (0, 8
3
ρ).

Therefore, compared to the leader, the social planner is now more aggressive and chooses

unconstrained monopoly for a larger set of parameters than the leader; see Figure 4 for

an illustration.18 As before, the intuition behind this statement is that the social plan-

ner takes into account the positive impact of R&D on consumer surplus and, therefore,

chooses a larger flow of R&D than the profit-maximizing leader. For high enough g and

Φ, this larger flow of R&D prevents the followers to even control the firm’s pricing policy

via the threat of entry, enabling the social planner an unconstrained monopoly position.

Consequently, the region of parameters where unconstrained monopoly is socially opti-

mal becomes significantly larger compared to the respective set of parameters for the

profit-maximizing leader. Moreover, the social planner’s optimal choice implies higher

steady-state output and a lower price (see the Appendix for details).

As for the optimal predation time when the predation phase is followed by an un-

constrained monopoly, it appears that the social planner is again more aggressive and

chooses a shorter T , provided that the R&D efficiency g and the relative size of the

market Φ are large enough (see the Appendix for more details). In this case, the larger

flow of R&D by the social planner that acts as unconstrained monopolist generates both

a bigger consumer surplus and a higher profit than any other market structure under

consideration.

8 Conclusion

The empirical findings and stylized facts on the relations among innovation, technolog-

ical leadership, and market power have motivated our paper to describe and analyze

a particular setup with a technological leader and endogenous entry, where the persis-

tence of monopoly is likely to arise in the long run. On the positive side, we study the

18It appears that there is now a tiny region (not illustrated in the figure) where both accommodation
and unconstrained monopoly are sustainable, that is φMS(g) < φA(g) when g ∈ (0, 1

3ρ). However, in
this region accommodation is inferior even to constrained monopoly. Thus, there is no point in making
a cross-profit comparison of accommodation and strategic predation with unconstrained monopoly.
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Figure 4: Socially efficient strategies in the dynamic model (for parameter values A = 5,
c = 4, r = 0.05, µ = 0.2)

leader’s choice between two main strategies of accommodation and strategic predation.

On the normative side, we analyze the welfare aspects of the resulting market struc-

tures: oligopoly versus (constrained or unconstrained) monopoly. We show that strategic

predation, when chosen by the leader, is in most cases also a socially efficient strategy.

Our analysis thus bears several important competition policy implications. First, the

size of market share per se might not be a sufficient condition for a legal offence and,

second, an abuse of a dominant position may not even be an issue in dynamic markets

where competition takes place through investments in R&D rather than through static

pricing, and where the very presence of actual or potential competitors constrains the

behavior of market leaders. The challenge for the design of antitrust policy against

predation is related to the ability of the antitrust authority to discriminate a price that is

low for other predatory purposes from a price that might be set very low as a part of an

efficiency-enhancing process, resulting, in turn, in enhanced competition and eventually

leading not only to the exit of competitors but also to the enhancement of social welfare

and, possibly, consumer surplus. For instance, in the presence of network effects or

learning effects it would be legitimate and consistent with vigorous competition that firms

set very low prices when they are introducing new products, targeting new customer

segments or rivals, installed bases, or when they are in the first phase of the learning

curve. Thus, a competition authority with limited knowledge of industry- and firm-

specific data faces a complex problem when attempting to identify those circumstances

under which loss-inducing predatory prices cause harm to the competition. For that

reason the antitrust authorities have to be fully aware of the risks of misclassification

when approaching a predation case.

Our results, however, are obtained under special modelling assumptions such as prod-

uct homogeneity, endogenous entry, and a specific form of cost-reducing investment with

exogenous speed of the adoption of new technology. Thus these results have to be taken

29



with the necessary caveats. As we may know (e.g., from Dixit, 1979), product differenti-

ation makes strategic predation more difficult and more costly for the leader. Moreover,

strategic predation in this case leads to fewer product varieties in the market, and this in

turn harms consumers. However, by the continuity argument, it is pretty safe to claim

that our findings would also hold in the situation when the degree of product differen-

tiation is not “large”, that is, when the goods are “close” substitutes. We also assume

an absence of entry barriers. If this is not the case then policy makers may worry about

having only one firm in the market — recall, for instance, the relatively recent case of

the banned merger of the General Electric and Honeywell. In the light of our analysis,

however, the message would be that one should target barriers to entry rather than mar-

ket leaders (see also Etro, 2006 in this respect). Another, possibly interesting, extension

would be to allow for an exogenous exit rate of the followers in the spirit of Melitz (see,

for instance, Ghironi and Melitz, 2005 and 2007 or Melitz and Ottaviano, 2007). Adding

this feature to the model is likely to make strategic predation less costly and thus more

attractive. In this case the leader would attain the monopoly position and display the

persistence more often.

Furthermore, a natural way to generalize our model would be to consider other effects

of investment. Despite the assumption of cost reducing investment, our results are not

bound to this setup only. Our intuition is actually driven by the fact that investment

increases the gap between the leader and the followers and results in less entry. Although

the qualitative features may be different, our intuition translates to other setups where

this property holds. Regarding the speed of adjustment, it could be “endogenized”, for

instance, as a function of the R&D intensity or R&D stock. But then, such endogenization

may appear to make the leader even more aggressive — reinforcing our findings about

the persistence of monopoly and strategic predation. Furthermore, we could model the

last, quantity competition stage between the leader and follower explicitly by relying on

the concepts of state-dependent strategies and Markov perfect equilibria. This approach

could make the game even more “dynamic” and possibly provide further insights.

A Appendix: Proofs and Derivations

Solution to the optimal control problem (A). The first-order conditions for the Hamilto-

nian (9) are:

Hz = −2ze−rt + µ
√
g η = 0,

Hq = 2qe−rt − µη = −η̇.

From the first condition, η = 2
µ
√

g
ze−rt, which after substitution into the second condition

directly yields (10). Equation (11) is the law of motion.
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The eigenvalues and eigenvectors of the matrix associated with system (10)–(11) are

λ1,2 =
ρ− 1±

√
(ρ+ 1)2 − 4g

2
µ, V1,2 = (v1,2, 1)T =

(
ρ+ 1±

√
(ρ+ 1)2 − 4g

2
√
g

, 1

)T

.

If g < ρ, then the eigenvalues are real and of opposite sign and the equilibrium is a

saddle;19 let λ1 > 0 > λ2. Moreover, the system has a constant particular solution

(z∗A, q
∗
A). Thus, its general solution can be written as

(z, q)T = (z∗A, q
∗
A)T + k1V1e

λ1t + k2V2e
λ2t, (24)

where k1 and k2 are arbitrary constants.

The transversality condition demands k1 = 0 (in other words, the optimal solution

must be bounded). The constant k2 is determined from the initial condition q(0) =
√
F ,

which implies k2 = − g
ρ−g

√
F . This gives the optimal path (14)–(15).

Solution to the optimal control problem (P ). As argued in Section 5.1, the solution is

again of the form (24). Using the initial condition and the terminal conditions for the

leader’s output we solve for constants k1 and k2.

k1(T ) =
A− c̄

eλ1T − eλ2T

[(
1− 3ρ− 2g

ρ− g
Φ
)

+
g

ρ− g
eλ2T Φ

]
, (25)

k2(T ) =
A− c̄

eλ2T − eλ1T

[(
1− 3ρ− 2g

ρ− g
Φ
)

+
g

ρ− g
eλ1T Φ

]
. (26)

Recall that k1 and k2 are constant with respect to t, but depend on the predation time

T . In further proofs we also use the argument T , and denote zP (t, T ) and qP (t, T ) the

optimal paths of z and q in order to highlight their dependency on T .

Proof of Lemma 1. The monotonicity of z and q (with respect to t) can be established

easily, when we recall that λ1 > 0 > λ2. Then also k1 > 0 > k2, whenever Φ < φA(g) =
ρ−g

3ρ−2g
. Thus, both k1(T )eλ1t and k2(T )eλ2t are increasing in t. The monotonicity of z and

q follows from the fact that eigenvectors V1 and V2 have positive coordinates.

Now we are in a position to study the comparative statics results with respect to

the predation time T . The initial condition at time t = 0 implies that k1(T ) + k2(T ) =√
F −q∗A, which is constant. Taking the derivative, we obtain k′1(T )+k′2(T ) = 0. A direct

computation gives

k′1(T ) = − A− c̄

(eλ1T − eλ2T )2

[
(λ1e

λ1T−λ2e
λ1T )

(
1− 3ρ− 2g

ρ− g
Φ
)

+
g

ρ− g
(λ1−λ2)e

(λ1+λ2)T Φ
]
,

19If ρ < g < 1
4 (ρ + 1)2, the equilibrium is an unstable node. If 1

4 (ρ + 1)2 < g, the equilibrium is an
unstable focus.
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which is negative, given λ1 > 0 > λ2. Therefore, ∂
∂T
qP (t, T ) = (eλ1t − eλ2t)k′1(T ) and

∂
∂T
zP (t, T ) = (v1e

λ1t − v2e
λ2t)k′1(T ). Since λ1 > 0 > λ2 and v1 > v2, both partial

derivatives are clearly negative.

Taking the limit T → ∞, we obtain k1(T ) → 0 and k2(T ) → − g
ρ−g

√
F , which are

the same constants as in accommodation. Thus, zP (t, T ) and qP (t, T ) monotonically

decrease and converge pointwise towards the values in accommodation zA(t) and qA(t) as

T →∞.

Proof of Lemma 2. Assume Φ < φA(g). The convergence with respect to T follows from

the direct evaluation of profits and from the convergence of coefficients k1 and k2 estab-

lished in the proof of Lemma 1 (note that the instantaneous profit is actually a linear

combination of exponential functions).

Now we prove the monotonicity with respect to T . Consider the Hamiltonian for the

problem in accommodation. Substituting for the Lagrange multiplier η, we obtain the

(present value) Hamiltonian along the optimal path:

H =
(
q2 + z2 − F − 2

√
g
qz +

2
√
g

√
F z
)
e−rT .

Recall that both q, z, and also H are in fact functions of t and T . In order to evaluate

H∗(T ) we need to substitute the terminal values of z and q at t = T . Recall that

qP (T, T ) = A − c̄ − 2
√
F = q̂0 is constant, as given by the terminal condition for the

predation phase. Let us now denote (the current value Hamiltonian)

h(T ) = H∗(T )erT = z2
P (T, T )− 2

√
g

(q̂0 −
√
F ) zP (T, T ) + q̂2

0 − F.

As shown in the text preceding Lemma 2, the derivative of the leader’s profit from the

predation phase then equals d
dT
IP (T ) = H∗(T ) = h(T )e−rT . Moreover, d2

dT 2 IP (T ) =

h′(T )e−rT − rh(T )e−rT . In the following we establish some properties of h(T ):

(i) limT→0+ h(T ) = +∞.

Proof. Given v1 > v2 and λ1 > 0 > λ2, we find that limT→0+ zP (T, T ) = +∞.

Because h(T ) is quadratic in z(T, T ), then also limT→0+ h(T ) = +∞.

(ii) limT→∞ h(T ) = (A− c̄)2
[(

1− 3ρ−2g
ρ−g

Φ
)2
ψ2(g) + (1− 3Φ)(1−Φ)− 1

g
(1− 3Φ)2

]
> 0,

where ψ(g) = 1
2
√

g
[ρ− 1 +

√
(ρ+ 1)2 − 4g] > 0.

Proof. Denote Y the expression in square brackets. It follows from (24) and (25)–

(26) that

lim
T→∞

zP (T, T ) = z∗A +
[
(A− c̄− 3

√
F )− g

ρ− g

√
F
]ρ+ 1 +

√
(ρ+ 1)2 − 4g

2
√
g

.
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The identity limT→∞ h(T ) = (A − c̄)2Y is then obtained by a direct computation.

To prove that Y > 0, we discuss two cases. First consider the case g ≥ 1−3Φ
1−2Φ

. As the

first term in Y is non-negative, then Y ≥ (1− 3Φ)(1−Φ)− 1
g
(1− 3Φ)2. Using the

above inequality for g, we obtain Y ≥ (1−3Φ)(1−Φ)−(1−3Φ)(1−2Φ) = Φ(1−3Φ),

which is positive. Second, let 0 < g < 1−3Φ
1−2Φ

. Observe that this implies g < 1. Now

for any ρ ≥ 1, we have ρ > 1−2Φ
1−3Φ

g, and thus Φ < φA(g). For ρ = 1 we obtain by a

direct computation that Y = g
1−g

Φ2, which is positive. As the last step, we show

that Y is increasing in ρ, when ρ ≥ 1. This follows from the fact that both ψ(g) as

well as 1− 3ρ−2g
ρ−g

Φ are positive and increasing in ρ.

(iii) h′(T ) < 0 for all T > 0.

Proof. Consider the derivative h′(T ) = 2√
g
[
√
g zP (T, T ) − q̂0 +

√
F ] d

dT
zP (T, T ).

According to the law of motion, the term in brackets is actually the time derivative

of the leader’s output evaluated at time t = T , which is positive according to

Lemma 1. Thus, it remains to prove that d
dT
zP (T, T ) < 0. This derivative is equal

to

d

dT
zP (T, T ) = [k′1(T ) + λ1k1(T )]v1e

λ1T + [k′2(T ) + λ2k2(T )]v2e
λ2T =

= [k′1(T ) + λ1k1(T )] (v1 − v2)e
λ1T =

= −e
(λ1+λ2)T (A− c̄)(v1 − v2)

(eλ1T − eλ2T )2

[
(λ1 − λ2)

(
1− 3ρ− 2g

ρ− g
Φ
)
+

+
g

ρ− g
(λ1e

λ2T − λ2e
λ1T )Φ

]
,

where the second line is obtained by differentiating the terminal condition k1(T )eλ1T +

k2(T )eλ2T = q̂0 − q∗A, which gives [k′2(T ) + λ2k2(T )]eλ2T = −[k′1(T ) + λ1k1(T )]eλ1T ,

and the third line comes by a direct computation. As v1 > v2, λ1 > 0 > λ2, and

Φ < φA(g), we indeed see that d
dT
zP (T, T ) < 0.

(iv) h(T ) > 0 for all T > 0.

Proof. This follows directly from properties (ii) and (iii).

The monotonicity and concavity of IP (T ) then follow from (iv) and (iii).

As the last part of the proof it remains to prove the monotonicity with respect to

µ. Here we make use of the Dynamic Envelope theorem by Caputo (1990). Similarly to

the static envelope theorem, it specifies the (total) derivative of the optimal value of the

objective functional with respect to a parameter. In our case,

d

dµ
IP (T ) =

∫ T

0

Lµ dt,
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where L is the Lagrangian of the problem. Note that in our problem the Lagrangian

function coincides with the Hamiltonian.20 Because the parameter µ appears only in the

law of motion, we obtain

d

dµ
IP (T ) =

∫ T

0

η(t)[
√
F − q(t)−√g z(t)]e−rt dt =

∫ T

0

2

µ
√
g
z(t)q̇(t)e−rt dt.

Since z is non-negative, and it was already shown that q is increasing, we conclude that
d
dµ
IP (T ) > 0.

Proof of Proposition 1. The derivative of the leader’s overall profit takes the form

H∗(T )− re−rT ICM = [h(T )− rICM ]e−rT .

As h(T ) is decreasing, the equation h(T ) = rICM may have at most one solution. More-

over, if such a solution exists (denote it as T ∗), then the leader’s profit is increasing on

(0, T ∗) and decreasing on (T ∗,∞), and, therefore, the leader prefers strategic predation

(with the optimal predation time T ∗) over accommodation. On the other hand, if the so-

lution does not exist, then h(T ) > rICM for all T ∈ (0,∞), because h(T ) is not bounded

from above as shown in property (i) in the proof of Lemma 2. Thus, the leader’s profit

is increasing in T and the leader prefers accommodation over strategic predation.

In order to check whether the overall profit attains its maximum at finite T it suffices

to evaluate the sign of h(T ) − rICM in the limit, as T → ∞. Recall that rICM =

q2
CM − z2

CM − F , where zCM and qCM are given by (17)–(18). This together with the

property (iii) in the proof of Lemma 2 gives

lim
T→∞

h(T )− rICM = (A− c̄)2
[(

1− 3ρ− 2g

ρ− g
Φ
)2

ψ2(g)− Φ
(
1− 7

4
Φ
)]
.

Since Φ < ρ−g
3ρ−2g

< 1
3
, the above limit is positive if and only if the condition stated in the

proposition holds. This completes the proof.

As a byproduct, we can also compute the value of (instantaneous) investments at the

optimal predation time. More precisely, by solving the quadratic equation h(T ) = rICM

we obtain z(T, T ) = (A− c̄)
[
(1− 3Φ)/

√
g +

√
Φ(1− 4

7
Φ)
]
.

Solution to the optimal control problem (M). The Hamiltonian for the problem becomes

H = (q2 − z2 − F )e−rt + ηµ[1
2
(A− c̄)− q + 1

2

√
g z], which yields the following differential

equation for the control variable ż = (r + µ)z − 1
2
µ
√
g q. The solution follows directly

20Compared to the Hamiltonian, the Lagrangian contains additional terms for equality constraints
multiplied by Lagrange multipliers.
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from the corresponding dynamic system by the same procedure as for the problem in

accommodation.

Proof of Proposition 2. Similarly as in the proof of Proposition 1, we find that the deriva-

tive of social welfare with respect to T is H∗(T ) − re−rT (ICM − CSA + CSCM) =

[h(T )− rICM + r(CSA − CSCM)]e−rT . Moreover, a straightforward computation gives

lim
T→∞

h(T )−rICM +r(CSA−CSCM) = (A− c̄)2
[(

1− 3ρ− 2g

ρ− g
Φ
)2

ψ2(g)− 1

2
Φ
(
1− 9

4
Φ
)]
.

The condition stated in Proposition 2 now follows directly from this equality.

Furthermore, since h(T ) is decreasing and CSA > CSCM , the leader’s first-order

condition has a lower solution than the social planner’s first-order condition.

Solution to the social planner’s problem in unconstrained monopoly. As in Problem (M),

we obtain the Hamiltonian (3
2
q2 − z2 − F )e−rt + ηµ[1

2
(A − c̄) − q + 1

2

√
g z] and thus

the following differential equation describing the dynamics of the control variable: ż =

(r+µ)z− 3
4
µ
√
g q. The solution is again obtained directly from the corresponding dynamic

system. In particular, the steady-state of the system is

z∗MS =
3
√
g

8ρ− 3g
(A− c̄), q∗MS =

4ρ

8ρ− 3g
(A− c̄).

Note that z∗M < z∗MS. Thus, in the steady-state, the leader underinvests, and also its

output is lower than the social optimum.

The sustainability condition follows directly from the comparison of the steady-state

value of the leader’s costs c∗MS = c̄− 3g
8ρ−3g

(A− c̄) with the critical value ĉ.21

To conclude, let us comment on the comparison of predation times. The social plan-

ner’s optimal predation time maximizes the expression IP (T )+e−rT IMS+(1−e−rT )CSA+

e−rTCSMS, where IMS =
∫∞

0
[q2

MS−z2
MS−F ]e−rt dt and CSMS = 1

2

∫∞
0
q2
MSe

−rt dt are the

leader’s profit and consumer surplus under the socially optimal investment, respectively.

The derivative of social welfare is [h(T ) − r(IMS − CSA + CSMS)]e−rT . Now, it can be

easily shown that IMS − CSA + CSMS < IM , and also IMS − CSA + CSMS < ICM for

sufficiently large g. For decreasing h(T ), our result implies that the social planner chooses

a shorter predation time than the leader.22

21Once more, an economic interpretation requires c∗MS > 0, or equivalently g < 8
3ρ c̄/A. See footnotes 7

and 16 for more details.
22Note however that h(T ) may not necessarily be decreasing outside the region where Φ < φA(g)

when T is large. Thus, we have additionally verified the comparison of predation times in unconstrained
monopoly numerically (using a grid of values of parameters g and Φ in the range when unconstrained
monopoly is feasible, and computing the optimal predation times for the values of (g,Φ) from that grid).
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