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Abstract

A sender who chooses a signal to reveal to a receiver can often influence
the receiver’s subsequent actions. Is persuasion more difficult when the re-
ceiver has her own sources of information? Does the receiver benefit from
having additional information sources? We consider a Bayesian persuasion
model extended to a receiver’s endogenous acquisition of information under
an entropy-based cost commonly used in rational inattention. A sender’s opti-
mal signal can be computed from standard Bayesian persuasion subject to an
additional constraint: the receiver never gathers her own costly information.
We further determine a finite set of the sender’s signals satisfying the additi-
onal constraint in which some optimal signal must be contained. The set is
characterized by linear conditions using the receiver’s utility and information
cost parameters. The new method is also applicable to a standard Bayesian
persuasion model and can simplify, sometimes dramatically, the search for a
sender’s optimal signal (as opposed to a standard concavification technique
used to solve these models). We show that the ‘threat’ of additional lear-
ning weakly decreases the sender’s expected equilibrium payoff. However, the
outcome can be worse not only for the sender, but also for the receiver.
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1 Introduction

Does a buyer/a politician benefit from the ability to acquire her own information in

addition to a seller’s/a lobbyist’s information? A decision maker often relies on free

information provided by an interested party, but she may also be able to obtain her

own information at a costly effort. Will she choose to acquire any? Will she benefit

from the threat of acquiring additional information?

We consider a Bayesian persuasion model (Kamenica and Gentzkow, 2011; hence-

forth KG) extended to an endogenous acquisition of costly information. As in KG, a

sender chooses a signal conveying information about an unknown state of the world

to disclose to a receiver, a decision-maker. However, unlike in KG, before taking

action, the receiver further chooses her own signal under an entropy-based cost,

as in rational inattention (Sims, 2003). We show that the possibility of additional

learning reduces the sender’s persuasive power (lowering his expected equilibrium

utility). However, the outcome can also be worse for the receiver, as the sender

can strategically prefer to disclose significantly less information when the receiver

has her own learning option. For instance, the sender’s strategic manipulation of

a receiver’s consideration set or his dislike for particular actions can lead to such a

scenario, see Section 5.

We exploit a similarity in Bayesian persuasion and rational inattention allowing for

tractability: any signal is feasible as long as it is consistent with prior beliefs. Signals

can thus be explicitly modeled by posterior distributions over unknown states under

a martingale property (KG; Caplin and Dean, 2013; henceforth CD). An optimal

signal is then found by a concavification of an underlying value function of posterior

beliefs related to the expected utility of the information designer. The concavi-

fication method remains valid in our model, but it requires solving the receiver’s

maximization problems for an entire space of beliefs first, which quickly becomes

intractable.

We propose a new method not relying on concavification; it is sufficient to search
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through a relatively small finite set of the sender’s signals, characterized by a series

of linear conditions. The method is also applicable to a KG model, which is a li-

miting case of our model, and can simplify, sometimes dramatically, the search for

a sender’s optimal signal. First, our model can be solved as a standard Bayesian

persuasion under an additional constraint: the receiver never costly learns, captured

in a Never-Learning Lemma. This results from both the sender’s and the receiver’s

information technology being unconstrained (apart from the martingale property)

and certain properties of the receiver’s cost function. Second, we construct a finite

set of the sender’s signals satisfying the additional constraint and in which some

optimal strategy must be contained. The new method complements the result of

Lipnowski and Mathevet (2017) who show, in the standard Bayesian persuasion mo-

del, sufficiency to consider a properly chosen subset of the sender’s signals. While

they provide general abstract conditions on the subset, we provide exact linear con-

ditions which follow from the entropy-based cost, but are also valid for the standard

Bayesian persuasion at the limit.

We conclude the paper by examining the robustness to variations of the receiver’s

cost. The key simplification step (the Never-Learning Lemma) holds for a whole

class of posterior-separable cost functions, for which the entropy-based cost is a

prime example. Once the information technology is less flexible, this simplification

need not hold; the sender can take advantage of the restriction on the set of feasible

receiver’s signals. However, the possibility that the receiver can be hurt by having

the option to learn is not unique to posterior-separable cost functions.

The paper is organized as follows. Section 2 sets up a motivating example. Section

3 provides a general model. Section 4 states the main simplification result and

describes the new solution method. Section 5 describes comparative statics, giving

examples in which the receiver does not benefit from having the learning option.

Section 6 discusses the assumption of the receiver’s information technology. Section

7 gives an an overview of the relevant literature and Section 8 concludes.
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2 Motivation: Simple model

A seller (he) is persuading a buyer (she) to purchase his product (e.g., a music CD),

which can be either a good match (ω = 1) or a bad match (ω = 0). The buyer can

either buy (a = 1) or not buy (a = 0). u(a, ω) and v(a) are the buyer’s and seller’s

utilities,

u(a, ω) =


1 a = 1 ∧ ω = 1

−1 a = 1 ∧ ω = 0

0 otherwise

, v(a) =

1 a = 1

0 a = 0
.

We identify the beliefs with probability that ω = 1. A common prior belief is

µ0 := Pr[ω = 1] < 0.5 (under which the buyer’s optimal action is not to buy).

The seller may persuade the buyer to take his preferred action (to buy) by providing

further information (e.g., let her listen to a song). The buyer then updates her priors

to an interim belief µ := Pr[ω = 1|seller’s information]. The seller’s information

strategy is a choice of a lottery τ ∈ ∆([0, 1]) over interim beliefs with mean µ0.

After the buyer updates to a particular interim belief µ, she can gather additional

information at a costly effort (e.g. search on the Internet), further updating her

beliefs to a posterior belief γ = Pr[ω = 1|seller’s and buyer’s information]. Her

information strategy is a choice of a lottery φ ∈ ∆([0, 1]) over posterior beliefs with

mean µ. If the optimal lottery satisfies supp(φ) = µ, we say she does not learn at

µ. Otherwise, we say she learns at µ.

While the seller’s information is costless, the buyer bears a cost for her information

(e.g. opportunity cost of time). Given µ, the cost of a lottery φ is λ (H(µ)− EφH(γ)),

where λ ≥ 0 is an information cost parameter and H(µ) − EφH(γ) ≥ 0 states how

much uncertainty about the match, as measured by Shannon entropy1 H(·), is ex-

pected to be reduced by φ.

1The Shannon entropy at belief p ∈ [0, 1] is H(p) = −(p ln p+ (1−p) ln(1−p)) where 0 ln 0 = 0.
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To solve the game, we exploit one feature of the buyer’s optimal behavior: once

she obtains her chosen information (updates to a particular posterior γ), she never

wishes to engage in another round of learning even if given a chance. This stems

from a set of the buyer’s information strategies being unconstrained (apart from the

consistency requirement that a mean is preserved) and from her cost function being

posterior-separable (see Section 6). The latter guarantees that the cost is increasing

in Blackwell informativeness and that it is invariant to intermediate stages2. As the

seller’s set of information strategies is also unconstrained, he can always skip the

buyer’s potential learning and directly ‘send’ her to the corresponding posteriors

where she would have ended up by herself, without changing the outcome of the

game. Since the seller’s information is costless, it is thus sufficient to focus on a

specific class of the seller’s strategies under which the buyer never decides to further

costly learn.

Buyer’s optimal behavior

We follow an approach of CD to solve for the buyer’s optimal behavior. Given µ,

the buyer maximizes

maxφ∈∆([0,1]) Eφ[B(γ)]− λ (H(µ)− Eφ[H(γ)]) (1)

s.t. Eφ[γ] = µ,

where the expectation is taken over posterior beliefs induced by φ and B(γ) is the

buyer’s gross expected utility at posterior γ given that her subsequent action is

optimal. Hence, B(γ) = 0 for γ < 1/2 (not buying) and B(γ) = 2γ − 1 otherwise

(buying).

2The cost of achieving a particular distribution of posterior beliefs would be the same regardless
of whether the learning occurs in one or more stages.
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Figure 1: Buyer’s value function û(γ) and its concavification U(γ)
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Note that the problem (1) can be rewritten as

maxφ∈∆([0,1]) Eφ[û(γ)]− λH(µ)︸ ︷︷ ︸
=const.

(2)

s.t. Eφ[γ] = µ,

where û(γ) = B(γ)+λH(γ) is the buyer’s value function at posterior γ. The problem

(2) has a geometric interpretation. Let U(γ) be a concavification of û(γ) defined

as the smallest concave function that is everywhere weakly greater than û(γ). CD

showed that the support of an optimal lottery φ∗ are those posterior beliefs that

support the tangent hyperplane to the lower epigraph of the concavification above

the interim belief µ, U(µ). Hence, whenever û(µ) = U(µ), the receiver does not

learn at µ and whenever û(µ) < U(µ), she learns at µ, where the support of the

optimal lottery is always the same: supp(φ∗) = {µ, µ}, see Fig. 1.

Hence, there are two threshold interim beliefs3 0 ≤ µ ≤ µ ≤ 1 that divide the space

of interim beliefs into two non-learning and one learning regions. A non-learning

region of a particular action are all interim beliefs at which the buyer does not

learn and optimally takes that action. A non-learning region of not buying is [0, µ]

3Solving the buyer’s maximization problem, we obtain µ = 1

1+e
1
λ

and µ = e
1
λ

1+e
1
λ

(see Appendix

A).

6



Figure 2: Function v̂(µ) and sender’s optimal information strategy
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and that of buying is [µ, 1]. For intermediate values of µ, when the buyer is very

uncertain about what the right thing to do is, she learns and only sometimes buys

(in the case of favorable information). Note that once she obtains her information

(updates her beliefs either to a posterior µ or µ), she does not wish to engage in

another round of learning even if given the chance4.

Bayesian persuasion s.t. never-learning constraint

For each µ, let v̂(µ) be the seller’s expected utility which already accounts for the

optimal buyer’s behavior at µ.5 Let V (µ) be a concavification of v̂(µ) defined as

the smallest concave function that is everywhere weakly greater than v̂. Then the

seller’s expected equilibrium utility is the concavification evaluated at the prior,

V (µ0), and the support of the optimal sender’s lottery can be found from the graph

in the same fashion as in the buyer’s problem. See Fig. 2 for an example of v̂(µ)

and the resulting optimal sender’s strategy with λ→∞ (equivalent to KG’s setting

with a buyer who cannot gather her own information) and with λ = 1.5.

4As the buyer’s value function û(γ) and its concavification U(γ) coincide at values µ and µ, no
learning is optimal either at µ or at µ.

5Hence, v̂(µ) = 0 if µ ≤ µ (the buyer does not learn and does not buy), v̂(µ) = 1 if µ ≥ µ (the

buyer does not learn and buys), and v̂(µ) = 1
µ−µµ−

µ

µ−µ for µ ∈ (µ, µ).
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The support of the optimal lottery is supp(τ ∗) = {0, µ} (when λ → ∞, µ = µ =

1/2). These are beliefs that belong to non-learning regions. We show that it is

generally sufficient to only consider the seller’s information strategies under which

the buyer never costly learns, i.e., the lotteries with the support over interim beliefs

from non-learning regions only. This is because the buyer never wishes to have more

than one round of costly learning, the set of the seller’s information strategies is

unconstrained, and his information is costless. The seller can then skip the receiver’s

learning part with his information without changing the outcome of the game.

Further, note that the support of the optimal lottery, supp(τ ∗) = {0, µ}, are ex-

treme points6 of the non-learning regions. We show that it is sufficient to consider

the sender’s strategies under which only extreme points of non-learning regions are

chosen. Hence, in this example, one only needs to consider lotteries with support

over interim beliefs from the set {0, µ, µ, 1}, where the thresholds µ, µ are speci-

fied by particular linear equations resulting from the characterization of the optimal

receiver’s strategy.

3 General model

A receiver (she) chooses an action a from a finite set A. A payoff-relevant state ω

is drawn from a finite set Ω according to an interior prior distribution µ0 ∈ ∆(Ω).

Before choosing her action, the receiver obtains free information about ω provided

by a sender (he) and rationally updates her beliefs from the prior µ0 to interim

belief µ ∈ ∆(Ω). A sender’s (information) strategy is a choice of a distribution τ ∈

∆(∆(Ω)) over the (updated) interim beliefs s.t. Eτ [µ] = µ0 (martingale property).

After updating to a particular µ and before her move, the receiver can acquire addi-

tional costly information about ω, further rationally updating her beliefs from µ to a

posterior belief γ ∈ ∆(Ω). A receiver’s strategy consists of an information strategy,

6An extreme point of a convex set S is a point in S which does not lie in any open line segment
joining two points of S. Hence, extreme points of non-learning region [0, µ] are {0, µ} and extreme
points of non-learning region [µ, 1] are {µ, 1}.
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which is a choice of a distribution φ ∈ ∆(∆(Ω)) over the (further updated) posterior

beliefs s.t. Eφ[γ] = µ (martingale property), and an action strategy σ : ∆(Ω)→ A,

where σ(γ) indicates the choice of action at a posterior belief γ. Let S be the set

of all action strategies. We focus on sender-preferred subgame perfect equilibria: in

case of indifference, the receiver uses a strategy that is (weakly) preferred by the

sender7.

The sender bears no information costs and derives utility v(a, ω). The value of the

sender’s strategy is the equilibrium expectation of v(a, ω) under that strategy profile.

The sender benefits from persuasion if there exists τ whose value is strictly larger

than the equilibrium expectation of v(a, ω) under no sender information, defined as

τ0 with supp(τ0) = µ0.

The receiver derives gross utility u(a, ω), where the term ‘gross’ indicates that infor-

mation costs are not included. As is standard in RI literature, we assume Shannon-

entropy based cost. For a random variable T with finite support distributed accor-

ding to µ ∈ ∆(supp(T )), the Shannon entropy is given by

H(T |µ) = −
∑

θ∈supp(T )

µ(θ) lnµ(θ), (3)

which is a measure of uncertainty about T (where 0 log 0 = 0 by convention). We

assume the cost is proportional to the conditional mutual information8

I(φ, ω|µ) = H(ω|µ)− Eφ[H(ω|γ)] (4)

between a receiver’s information strategy φ and the state ω. Given µ, it captures

how much uncertainty about ω is expected to be reduced by φ. The receiver solves

the following problem.

Definition 1. Given interim belief µ, the receiver’s rational inattention problem

7See Appendix A for a sufficient assumption for a unique optimal receiver’s strategy.
8For more on the Shannon entropy and mutual information, see Cover and Thomas (2006).

9



(henceforth the receiver’s RI problem) is

max
φ∈∆(∆(Ω)),σ∈S

Eφ

[∑
ω∈Ω

γ(ω)u (σ(γ), ω)

]
− λI(φ, ω|µ) (5)

s.t. Eφ[γ] = µ,

where λ ≥ 0 is an information marginal cost parameter, and the expectation is over

posterior beliefs γ distributed according to φ; γ(ω) denotes the probability of state

ω at belief γ.

Matějka and McKay (2015) prove the existence of a solution to (5), which we denote

by (φ∗µ, σ
∗)9. For a characterization of the receiver’s optimal behavior, see Appendix

A. Say the receiver does not learn at µ if supp(φ∗µ) = µ. Otherwise, say the receiver

learns at µ.

Applying backward induction, we can express a sender’s conditional expected utility

for each µ, denoted by v̂(µ), where

v̂(µ) := Eφ∗µ

[∑
ω∈Ω

γ(ω)v(σ∗(γ), ω)

]
, (6)

where the expectation is over posterior beliefs γ distributed according to φ∗µ. v̂(µ) is

the sender’s expected utility at an interim belief µ already accounting for the sub-

sequent optimal receiver’s behavior at µ. The sender solves the following problem.

Definition 2. Given prior µ0, the sender’s maximization problem is

max
τ∈∆(∆(Ω))

Eτ [v̂(µ)] (7)

s.t. Eτ [µ] = µ0,

where the expectation is over interim beliefs µ distributed according to τ .

9The optimal action strategy is independent of the interim belief as arg maxa Eγu(a, ω) is inde-
pendent of the intermediate steps as to how one arrives at having posterior belief γ.
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Say the receiver never learns if the optimal sender’s strategy τ ∗ satisfies: ∀µ ∈

supp(τ ∗), the receiver does not learn at µ.

4 Bayesian persuasion s.t. never-learning

While v̂(µ) is straightforward when the receiver has no additional learning option10,

it becomes complicated once she can learn. It requires finding the receiver’s optimal

behavior for an entire space of interim beliefs, {(φ∗µ, σ∗)}µ∈∆(Ω), which is intractable

already for a small state space. We provide an approach that avoids such calculati-

ons.

First, we show that the game can be solved as a standard Bayesian persuasion model

subject to an additional constraint: the receiver never costly learns. Determining

the interim beliefs at which the receiver does not learn is sufficient. At such beliefs,

the receiver’ behavior is deterministic and v̂(µ) =
∑

ω∈Ω µ(ω)v(σ∗(µ), ω). We then

further specify a finite set of these beliefs on which some optimal sender’s strategy

must be supported.

4.1 Never-learning constraint

When the receiver is fairly uncertain about what the right thing to do is, she first

learns to refine her beliefs before acting. However, when her interim belief is precise

enough, she does not learn. Let us formalize the subsets of such interim beliefs.

Definition 3. A non-learning region of action a ∈ A is

NLa := {µ ∈ ∆(Ω) : supp(φ∗µ) = µ ∧ a ∈ arg max
a′∈A

∑
ω∈Ω

µ(ω)[u(a′, ω)]}. (8)

10With no additional learning option, the receiver’s optimal action is always deterministic at
µ. In that case, v̂(µ) is a piecewise-linear (upper semi-continuous) function: ∀µ ∈ ∆(Ω) we have
v̂(µ) =

∑
ω∈Ω µ(ω)v(σ∗(µ), ω).
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The non-learning region of some action are all interim beliefs µ at which no learning

and taking that action are optimal11. In the introductory example, a non-learning

region of not buy is µ ∈ [0, µ], and that of buy is µ ∈ [µ, 1].

The following Never-Learning Lemma states that it is sufficient to focus on a subset

of the sender’s strategies, under which the receiver never learns. The game can

be solved as a standard Bayesian persuasion problem subject to a never-learning

constraint12.

Lemma 1 (Never-Learning). Let τ be a sender’s information strategy of value v.

Then there exists a sender’s strategy τ ′ of value v where ∀µ ∈ supp(τ ′): µ ∈ ∪aNLa.

In a proof of Never-Learning Lemma, we use a specific feature of the receiver’s

optimal behavior captured in Lemma 2.

Lemma 2. The receiver wants to costly learn at most once, even if more rounds of

costly learning were possible: ∀µ ∈ ∆(Ω), a receiver’s optimal information strategy

φ∗µ satisfies: if γ ∈ supp(φ∗µ) then γ ∈ ∪a∈ANLa.

Lemma 2 follows from the set of the receiver’s information strategies being uncon-

strained, the cost being increasing in Blackwell informativeness and invariant to

intermediate stages13. Then, as the set of the sender’s information strategies is also

unconstrained, he can incorporate, at no cost, any receiver information strategy.

Lemma 2 implies that doing so does not change the particular outcome of the game

(a distribution of the receiver’s actions conditional on the state) with respect to

what outcome the original sender’s information strategy induced. Thus, there is no

need to solve the receiver’s RI problems for an entire space of interim beliefs; finding

non-learning regions is sufficient. The Never-Learning Lemma is an analogy to a

revelation principle in mechanism design problems.

11When non-learning regions overlap, i.e. ∃µ ∈ NLa: | arg maxa′∈A
∑
ω∈Ω µ(ω)[u(a′, ω)]| > 1,

the optimal action strategy, σ∗(µ), follows a sender-preferred equilibrium assumption.
12For any λ ∈ R, v̂(µ) differs from v̂(µ) when the receiver has no additional learning option

(λ→∞) only at µ not belonging to some non-learning region.
13The cost of achieving a particular distribution of posterior beliefs would be the same regardless

of whether the learning occurs in one or more stages.
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Figure 3: Extreme points of non-learning regions and a candidate sender’s optimal
strategy (a, ω ∈ {1, 2, 3}, u(a, ω) = a if a = ω and 0 otherwise, λ = 2).
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4.2 Extreme-points solution method

Recall that in the introductory example, there is a (unique) seller’s strategy, un-

der which only the extreme points of non-learning regions are induced. While the

uniqueness property is not general (see Section 4.3), an optimality of some such

strategy is generally guaranteed, which is captured in Prop. 1.

Let EP a denote the set of extreme points14 of a non-learning region NLa.

Proposition 1. The set ∪a∈AEP a is non-empty and finite. Furthermore, whenever

a sender’s problem (7) has a solution, there exists an optimal sender’s strategy τ ∗,

for which |supp(τ ∗)| ≤ |Ω| and ∀µ ∈ supp(τ ∗): µ ∈ ∪a∈AEP a.

Note that a sender-preferred equilibrium assumption implies an upper semi-continuity

of v̂, which guarantees the existence of the equilibrium. Prop. 1 then says that we

can solve the game by comparing values of a finite number of the sender’s strategies.

These strategies induce (at most |Ω| of) extreme points of non-learning regions. See

Fig. 3 for an illustration of one such candidate sender’s strategy. Once v(a, ω) is

14An extreme point of a convex set B is a point in B which does not lie in any open line segment
joining two points of B.
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specified, we can determine the optimal one. The proof of Prop. 1 shows that for

any sender strategy τ under which the receiver never learns, there exists a sender’s

strategy τ ′, inducing only the extreme points, that has weakly higher value (where

the sender-preferred assumption is used for a limit case of λ → ∞). Carathéodory

Theorem is then used in restricting the size of the support of an optimal sender’s

strategy.

The following lemmas characterize the set ∪aEP a and the values of the candidate

sender’s strategies from Prop. 1. First, Lemma 3 characterizes the non-learning

regions as being either a closed convex set determined by a finite series of linear

inequalities (where the receiver’s primitives—u(a, ω), λ—are the parameters) or an

empty set. The linear conditions result from taking Shannon entropy as a measure

of uncertainty in a posterior-separable cost function, see Section 6. The conditi-

ons follow from eq. (14) in Appendix A, where the receiver’s optimal behavior is

characterized.

Lemma 3. For any λ ≥ 0 we have ∪a∈ANLa 6= ∅. Furthermore,

NLa =

{
µ ∈ ∆(Ω) :

∑
ω∈Ω

µ(ω)

(
e
u(a′,ω)

λ

e
u(a,ω)
λ

)
≤ 1 ∀a′ 6= a

}
∀a ∈ A. (9)

Whenever NLa 6= ∅, Lemma 3 implies that NLa has (finitely many) extreme points

(Krein-Milman Theorem). Lemma 4 states that an extreme point of a non-learning

region is a belief in NLa for which |Ω| of constraints from Lemma 3 are binding.

Lemma 4. An extreme point of NLa is µ ∈ R|Ω| where
∑

ω µ(ω) = 1 that satisfies

(i) ∀ω ∈ Ω: µ(ω) ≥ 0 and µ(ω) ≤ 1; and (ii)
∑

ω∈Ω µ(ω)

(
e
u(a′,ω)

λ

e
u(a,ω)
λ

)
≤ 1 ∀a′ 6= a, of

which |Ω| − 1 affine independent constraints are binding.

Lemma 5 determines the value v̂(µ) when µ is an extreme point of some non-learning

region. When an extreme point belongs to more non-learning regions, the sender-

preferred equilibrium assumption applies.

Lemma 5. Let µ ∈ EP a and a = σ∗(µ). Then v̂(µ) =
∑

ω∈Ω µ(ω)v(a, ω).
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Hence, to find an optimal sender’s strategy, it suffices to:

(i) determine ∪a∈AEP a (using Lemma 4);

(ii) evaluate v̂(µ) at those beliefs (using Lemma 5);

(iii) compare the values of the sender’s strategies that satisfy Bayes’ law and induce

at most |Ω| beliefs from the set ∪a∈AEP a.

Note that Lemmas 3, 4, 5 and Prop. 1 are applicable to KG, the case of a receiver

with no additional learning option, by taking λ→∞.

4.3 Equilibrium with learning?

In a setting with binary action and state spaces, a setting used in a number of

recent papers15, the receiver never costly learns in an equilibrium as long as the

sender benefits from persuasion, see Prop. 2. In a more general setting, however,

this does not necessarily hold in the case of multiple equilibria (even when the sender

benefits from persuasion), see Example 1. However, if we further assumed that the

sender incurs a strictly positive cost whenever the receiver learns (e.g., waiting cost),

equilibria with additional learning would disappear.

Let us first slightly restrict the sender’s preferences, a necessary and sufficient con-

dition for a unique equilibrium in a binary action and state spaces case. We rule

out pathological cases that can lead to situations in which two actions a and a′ are

both induced (under no learning) by a sender’s optimal strategy, but at the belief

at which the receiver takes a, the sender is exactly indifferent between a and a′.

Assumption 1. There exists no action a ∈ A s.t. (i) ∀µ ∈ ∆(Ω) : v̂(µ) ≤∑
ω∈Ω µ(ω)v(a, ω), and (ii) ∃µ ∈ NLa′ where a′ 6= a and v̂(µ) =

∑
ω∈Ω µ(ω)v(a, ω).

Proposition 2. Suppose |A| = |Ω| = 2 and the sender benefits from persuasion.

Then, (i) the receiver never learns in any equilibrium; and (ii) A1 holds if and only

if there exists unique equilibrium.

15Standard Bayesian persuasion was applied to bank regulation (Gick and Pausch, 2012), electo-
ral manipulation (Gehlbach and Simpser, 2015), investment decision (Bizzotto, Rüdiger and Vigier,
2015), and forecasting of disasters (Aoyagi, 2014).
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Figure 4: (a) Equilibrium with no learning; (b) Equilibrium with learning: the
receiver learns at µ′2 optimally inducing posteriors {γ1, γ2}.
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Example 1. Let A = Ω = {0, 1, 2}; u(a, ω) = 1 if a = ω and u(a, ω) = 0 otherwise;

v(a, ω) = 1 if a 6= 0, a 6= ω, and v(a, ω) = 0 otherwise; λ = 0.75; prior belief:

{µ0(0) = 0.5, µ0(1) = µ0(2) = 0.25}.

Fig. 4 depicts two optimal sender strategies for Example 1. In part a), an optimal

sender’s strategy τ ∗: supp(τ ∗) = {µ1, µ2, µ3} from Prop. 1 is shown. Under this

strategy, the receiver never learns. In part b), a different sender’s strategy τ ′∗:

supp(τ ′∗) = {µ′1, µ′2} is considered. At µ′2, the receiver learns and optimally induces

posteriors {γ1, γ2} = {µ2, µ3} with appropriate probabilities. Here, it is no longer

true that the receiver never learns. As the outcome of the game (distribution of the

receiver’s strategies conditional on the state) is the same under both τ ∗ and τ ′∗, τ ′∗

is also optimal. Note that the assumption A1 is satisfied in this example and hence

A1 generally is not a sufficient assumption for uniqueness of equilibria.
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4.4 Characterization of the sender’s optimal strategies

Let us provide further characterization of candidate strategies from Prop. 1. Recall

that in the introductory example, the optimal sender’s strategy has supp(τ ∗) =

{0, µ}; the buyer does not buy when µ = 0 and buys when µ = µ. Note two

properties. First, whenever the buyer chooses the least-preferred action (not to

buy), she is certain of the state, µ = 0; she never rejects a good match. Second,

whenever the buyer chooses an action that is not the seller’s least-preferred (to buy),

her beliefs are at a border of a non-learning region16. If her belief was inside a non-

learning region when she buys (µ > µ), the seller can increase the probability of

buying by slightly decreasing µ.

The first of these properties holds in general. Say an action a is a worst action if

v(a, ω) < v(a, ω) for all a 6= a and ω. Let EP∆(Ω) denote the set of extreme points

of the probability simplex ∆(Ω).

Proposition 3. If an optimal sender’s strategy from Prop. 1 induces a belief µ ∈

NLa, where a is a worst action, and a = σ∗(µ), then µ ∈ EP∆(Ω).

Prop. 3 states that whenever the receiver takes a worst action in an equilibrium

(under the sender’s strategy from Prop. 1), the state is fully revealed17. In the

introductory example, the action not to buy is a worst action. When the receiver

takes it, she is certain that the state is bad.

The second property holds under restriction on sender’s preference. When A1 is

not satisfied, the sender can be exactly indifferent to a change in the probability

mass between two different actions that are both induced (under no learning) by an

optimal sender’s strategy. This may break the second property.

Let bd(B) denote a boundary of the set B.

16With binary state, a border coincides with an extreme point
17If the receiver takes a worst action in an equilibrium under a different strategy than that of

Prop. 1, there is no uncertainty left in the sense that the probability of states for which a is not
optimal to choose is zero. Prop. 3 is an analogy of Prop. 4 in KG.
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Proposition 4. Let A1 hold and suppose the sender benefits from persuasion. If

an optimal sender’s strategy induces µ ∈ NLa, then µ ∈ bd(NLa).

Note that NLa has a piecewise-linear boundary. Consider two different extreme

points of NLa from different ‘linear segments’ of its boundary. Prop. 4 implies that,

under A1, both beliefs cannot be optimally induced (otherwise an optimal sender’s

strategy inducing an interim belief from the interior of NLa also exists)18.

5 Comparative statics

In this section, we examine the relationship between agents’ expected equilibrium

utilities and the receiver’s information cost parameter λ. We show that the access

to information has a disciplinary effect on the sender (decreases his expected equi-

librium utility), but it is not necessarily beneficial for the receiver either.

5.1 Sender

Proposition 5. The sender’s expected equilibrium utility (weakly) increases in λ.

As the receiver’s access to her own information represents an additional never-

learning constraint for the sender, it can only hurt him. The non-learning regions,

and hence the set of sender’s strategies under which the receiver never learns, do

not shrink as λ increases. The receiver’s potential learning is less threatening as her

information becomes more expensive.

18Prop. 4 is a modification of Prop. 5 in KG which states that any optimally induced interior
belief leads the receiver to being indifferent between at least two different actions (given the analogy
of A1 is satisfied).
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5.2 Receiver

Proposition 6. Assume A1, |A| = |Ω| = 2, and the sender benefits from persuasion

∀λ > 0. Then the receiver’s expected equilibrium utility (weakly) decreases in λ.

In a binary setting, the receiver (weakly) benefits from cheaper information, see

Prop. 6. In general, however, the receiver does not necessarily gain from having

the threat of learning; for intermediate cost, she can prefer commitment to not

having the option to learn at all. Ceteris paribus, an agent would benefit from

information being cheaper. However, in a strategic setting, the opponent responds

to how expensive the information of the other agent is. With conflict of interest, the

sender’s choice under intermediate λ can be less informative (Blackwell sense19) than

his choice under higher λ, making the receiver strictly prefer high to intermediate

cost. We illustrate this in two examples. In Example 2, the sender targets a specific

consideration set of the receiver (the set of actions chosen with strictly positive

probability), and in Example 3, the sender dislikes a particular set of actions.

Example 2. Ω = {0, 1}, A = {l, r, s}, the prior belief µ0 := Pr[ω = 1] = 0.1, and

u(a, ω) =



0.9 a = l ∧ ω = 0

1.5 a = r ∧ ω = 1

0.7 a = s

0 otherwise

, v(a, ω) =


4 a = r ∧ ω = 0

0.9 a = s

0 otherwise

.

Consider a receiver with three actions, two risky (l, r) and one safe (s). At her

prior, she would choose l, the sender’s least preferred action. The sender can design

an informative experiment inducing one other action to be chosen (upon favorable

realization), where the ‘amount’ determines which one. With enough information,

a sender’s most preferred action, r, is chosen upon favorable realization. With less

19An information strategy τ is more Blackwell-informative than τ ′ if and only if obtaining infor-
mation via τ is preferred to information via τ ′ by all expected utility maximizers. Equivalently, τ
is more Blackwell-informative than τ ′ if and only if supp(τ ′) lie inside the convex hull of supp(τ)
(Thm 12.2.2. in Blackwell and Girshick, 1954).
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Figure 5: Example 2—Manipulation of the receiver’s consideration set: v̂ over non-
learning regions and an optimal sender’s strategy. The sender targets: (a) actions
{l, s} (less information); (b) actions {l, r} (more information).
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Figure 6: Example 2—Equilibrium expected utilities as a function of λ.
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information, s is chosen upon favorable realization, but that happens with higher

probability. Fig. 5 depicts the sender’s optimal choice; µ0 and µ denote the prior

and interim probabilities of ω = 1, respectively. When λ → ∞, the sender targets

r. However, when λ = 1.5, too much information is now needed to target r and the

sender finds it optimal to give less information and to be satisfied with targeting s,

but with higher probability. Fig. 6 depicts the agents’ equilibrium expected utilities.

For intermediate values of λ, the sender finds it optimal to target action s.
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Figure 7: Example 3—v̂(µ) over non-learning regions and an optimal sender’s stra-
tegy. The sender provides more information when λ = 1250 than when λ = 1.25.
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Example 3. Ω = {0, 1}, A = {L,R, l, r}. Let u(L, 0) = u(R, 1) = 1, u(l, 0) =

u(r, 1) = 0.8, u(l, 1) = u(r, 0) = 0.2, and u(a, ω) = 0 otherwise. Let v(a, ω) =

u(a, ω) if a ∈ {l, r} and v(a, ω) = 0 otherwise. Let the prior µ0 := Pr[ω = 1] = 1/2.

Consider λ1 = 1.25 and λ2 = 1250.

A receiver has four risky actions (L,R, l, r) and a prior belief at which she learns

and possibly takes either l or r. A sender dislikes actions L,R, but cares about

determining which of the two actions l, r is optimal for the receiver. He wants

to give as much information as possible to distinguish which of the actions l, r

is better, under the constraint that neither L nor R is chosen, happening if too

much information is given. As the receiver’s information becomes more expensive,

this constraint is less restrictive and the sender is able to give ‘more’ information

(Blackwell sense) than before, see Fig. 7; µ0 and µ denote the prior and interim

probabilities of ω = 1, respectively.
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6 Discussion of the cost function

The assumed cost is a posterior-separable cost (Caplin, Dean, and Leahy, 2017):

Definition 4. Given µ, a posterior-separable cost function is

c(φ;ω|µ) = F (ω|µ)− Eφ[F (ω|γ)] (10)

where F : ∆(Ω) −→ R+ is a concave function and the expectation is over posteriors

γ induced by φ.

Lemma 2 and the Never-Learning Lemma hold under any posterior-separable cost

because of the following properties. The cost is invariant to intermediate stages:

the cost of achieving a particular distribution of posterior beliefs is the same if the

learning occurs in one or more stages. The cost also does not impose any restriction

on the set of feasible information strategies. The marginal cost of any receiver’s

information strategy is independent of the interim belief, i.e., of the starting point of

the receiver’s RI problem, and it is increasing in Blackwell informativeness. These

properties guarantee Lemma 2, which is the core of the Never-Learning Lemma.

Prop. 1 applies as well when the finiteness of ∪aEP a is omitted from the statement.

Lemmas 3 and 4 are specific for Shannon entropy, F (·) = λH(·).

The Never-Learning Lemma does not hold for all possible cost functions. For in-

stance, a receiver choosing a precision of a normally distributed signal at some cost

can wish to costly learn once more upon some signal realizations. However, in such

a setting, if the receiver were allowed to engage in as many learning rounds as she

wanted, an analogy of the Never-Learning Lemma would be obtained.

The possibility that the receiver can be hurt by having access to better information

technology is not unique to posterior-separable costs. In Appendix B, we solve the

introductory example under a different cost function: by paying c ≥ 0, the buyer

obtains a binary signal s ∈ {good, bad} of fixed precision p := Pr[s = ω|ω] > 0.5.

The seller exploits the restrictiveness of the buyer’s set of signals, adding an additio-
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nal effect in play. First, the key simplification step–the Never-Learning Lemma–fails.

As the buyer cannot vary the precision of her signal with interim beliefs, she may

wish to engage in more than one round of learning. The seller can take advantage

of this invariance and can strictly prefer to target buying through learning. Second,

the seller’s expected equilibrium utility is non-monotone in c. Whenever he induces

learning, he prefers a receiver with lower cost, because then inducing learning re-

quires less provided information. Third, the buyer’s expected equilibrium utility is

non-monotone in c. The buyer prefers intermediate to low or high cost. Whenever

the seller induces learning, he gives just enough information so that the buyer is

indifferent between learning and not. Hence, any benefit from costly learning is ex-

actly offset by paying cost c. With sufficiently high cost, however, the seller targets

buying directly without the buyer’s learning, who thus obtains valuable information

without paying c.

7 Related literature

Our model extends KG by enabling a receiver to endogenously acquire her own cos-

tly information. Extensions with an exogenously privately informed receiver have

already been examined in Kolotilin (2015, 2017) and Kolotilin, Mylovanov, Zape-

chelnyuk, and Li (2017), and summarized in Bergemann and Morris (2016). Our

result showing that the receiver’s expected equilibrium utility can be non-monotone

in her information cost parameter has a similar intuition as Kolotilin (2017), showing

that the receiver’s expected equilibrium utility can be non-monotone in the precision

of her (costless) exogenous private information. Our model is more general than the

above papers because we neither restrict the set of actions to be binary, as they

all do, nor do we assume linear environments as Kolotilin et al. (2017) do. The

notion that an agent in a strategic setting can be hurt by having access to better

information technology is not unique for Bayesian persuasion, e.g., see Roesler and

Szentes (2017) and Kessler (1998) for such a case in a contracting environment.

23



There is a rapidly growing Bayesian persuasion literature. Rayo and Segal (2010),

Perez-Richet and Prady (2011), Alonso and Câmara (2014), and Hedlund (2017)

explore Bayesian persuasion with a privately informed sender. Gentzkow and Ka-

menica (2014) model situations where the sender bears a cost associated with his

information. They provide a class of cost functions (including entropy-based cost)

that are compatible with the concavification approach. Similarly, we work with an

entropy-based cost, but the receiver is the bearer of the cost. Other extensions

include competition (Gentzkow and Kamenica, 2017a,b; Li and Norman, 2017), he-

terogeneous priors (Alonso and Câmara, 2016), or dynamic framework (Au, 2015;

Ely, Frankel, and Kamenica, 2015; Ely, 2017).

The assumptions about the receiver’s cost function fall under rational inattention

(Sims, 2003). Single-agent rational inattention decision problems have been stu-

died for investment decisions (van Nieuwerburgh and Veldkamp, 2009), rare events

(Maćkowiak and Wiederholt, 2011), static stochastic choice (Caplin and Dean, 2013,

2015; Caplin, Dean, and Leahy, 2016; Denti, Mihm, de Oliveira, and Ozbek, (2016);

Matějka and McKay, 2015), and dynamic stochastic choice (Steiner, Steward, and

Matějka, 2017). Yang (2011), Martin (2017), and Ravid (2014) examine rational

inattention in strategic situations. While the overall framework of our model is

strategic, the particular rational inattention problem is essentially a single-agent

decision problem since the costly information acquisition occurs at the last stage

of the game. We thus follow the papers on static stochastic choice when solving a

receiver’s rational inattention problem.

8 Conclusion

We extend a model of Bayesian persuasion to a possibility of additional costly infor-

mation acquisition by the receiver, modeled as in rational inattention. We exploit

common features of Bayesian persuasion and rational inattention, resulting in a trac-

table model which can be used as a building block for applied problems. Based on
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the characterization of an optimal receiver’s strategy, we offer an alternative solving

algorithm characterized by a series of linear conditions. The new algorithm is also

applicable to a standard Bayesian persuasion model and can simplify, sometimes

dramatically, the search for an optimal sender’s strategy. We further show that the

receiver does not necessarily benefit from having additional sources of information

and can prefer commitment to not having any.
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Appendix A: Receiver’s RI problem

A1: Geometric interpretation—Concavification

The receiver’s RI problem (5) can be rewritten as

maxφ∈∆(∆(Ω)) Eφ[û(γ)]− λH(ω|µ)︸ ︷︷ ︸
=const.

(11)

s.t. Eφ[γ] = µ

where û(γ) := B(γ) + λH(ω|γ) is a receiver’s value function at posterior γ and

B(γ) := Eγ[u(σ∗(γ), ω)] is a receiver’s expected utility at posterior γ under her

optimal action strategy σ∗(γ) ∈ arg maxa∈A Eγ[u(a, ω)]. The problem (11) has a

geometric interpretation. Let

U(γ) := sup{z ∈ R|(γ, z) ∈ co(û)} (12)

where sup denotes supremum and co(û) denotes the convex hull20 of the graph û, be

the concavification of û. U is the smallest concave function that is everywhere weakly

greater than û. CD showed that U(µ) − λH(ω|µ) is the receiver’s expected utility

under her optimal behavior, the receiver learns at µ if and only if U(µ) > û(µ), and

the support of the optimal information strategy, supp(φ∗µ), are the posterior beliefs

that support the tangent hyperplane to the lower epigraph of the concavification U

above µ. See Fig. 1 in Sec. 2 for this interpretation in the introductory example.

20A convex hull of a set X is the smallest convex set that contains X.
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A2: Characterization of the solution

Convexity of the entropy-based cost function implies that strictly more informative

strategies are strictly more costly than less informative such strategies. Hence opti-

mization is inconsistent with the choice of the same action in two distinct posteriors

(receiving distinct signals that lead to the same action is inefficient as information is

acquired but not acted upon). This implies that given µ, for purposes of optimiza-

tion, an optimal receiver’s strategy (φ∗µ, σ
∗) can be specified as a subset of available

actions Cµ ⊆ A (a consideration set) chosen with strictly positive unconditional pro-

babilities Paµ := Eφ∗µ(Pr[σ∗(γ) = a]) > 0 and corresponding act-specific posteriors

γaµ := {γ ∈ ∆(Ω) : γ ∈ supp(φ∗µ)∧σ∗(γ) = a}, see Matějka and McKay (2015). Cap-

lin et al. (2016) provide characterization of the receiver’s optimal strategy, which is

captured in Definition 5.

Definition 5. Given interim belief µ, a rational inattentive strategy at µ (henceforth,

RI strategy)—a solution to problem (5)—consists of tuples {Paµ}a∈A and {γaµ}a∈Cµ ,

where each action is chosen in at most one posterior, such that ∀ω ∈ Ω : µ(ω) =∑
a∈APaµγaµ(ω), and:

1. Invariant Likelihood Ratio Equations for Chosen Actions: given a, a′ ∈ Cµ,

and ω ∈ Ω,

γaµ(ω)

e
u(a,ω)
λ

=
γa
′
µ (ω)

e
u(a′,ω)

λ

(13)

2. Likelihood Ratio Inequalities for Unchosen Actions: given a ∈ Cµ and a′′ ∈

A \ Cµ,

∑
ω∈Ω

γaµ(ω)

(
e
u(a′′,ω)

λ

e
u(a,ω)
λ

)
≤ 1. (14)

Applying Lemma 4 to the motivating example in Section 2, we can find the (unknown)

extreme points of non-learning regions µ, µ by solving (1 − µ)e
−1
λ + µe

1
λ = 1 and

(1− µ) 1

e
−1
λ

+ µ 1

e
1
λ

= 1, respectively. Hence, µ = 1

1+e
1
λ

and µ = e
1
λ

1+e
1
λ

.
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Uniqueness

Generally, the receiver’s RI strategy may not be unique at all µ ∈ ∆(Ω).

Assumption 2. {e
u(a,ω)
λ , a ∈ A} are affine independent. That is, one cannot find

scalars αa, not all zero, such that
∑

a∈A αa = 0 and
∑

a∈A αae
u(a,ω)
λ = 0.

Matějka and McKay (2015) and CD show that A2 is a sufficient condition for uni-

queness.

Lemma 6. If A2 holds, then the receiver’s optimal strategy is always unique.

A2 rules out cases such as a receiver with two duplicate actions giving her the same

state-dependent payoffs. It is not very restrictive: when A2 fails, it holds under a

slight perturbation of u(a, ω). When A2 holds, all equilibria are sender-preferred

since the receiver is never indifferent between two strategies in an equilibrium.

Appendix B: Different cost function assumption

Here, we solve the introductory example under a different cost function. We assume

the receiver can obtain a partially revealing binary signal at a fixed cost c ≥ 0.

Let Ω = {0, 1}, A = {0, 1}, v(a, ω) = a, u(a, ω) = 1 if a = ω = 1, u(a, ω) = −1 if

a = 1 and ω = 0 and 0 otherwise. For the purpose of this part of the appendix, we

identify all the beliefs with the probability of state ω = 1. Let µ0, µ, γ ∈ [0, 1] be

the probability of ω = 1 at a prior, interim, and posterior belief, respectively.

Given µ, the receiver can obtain a binary signal s ∈ {0, 1} of precision p := Pr[s =

ω|ω] > 0.5 by paying c ≥ 0. Say the receiver learns if she pays c and gets the signal.
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Receiver’s maximization problem

Given µ, if the receiver learns, she updates her beliefs to a posterior γs(µ) := Pr[ω =

1|s, µ] with probability φs(µ) := Pr[s|µ], where

γ1(µ) =
pµ

φ1

, φ1(µ) = pµ+ (1− p)(1− µ),

γ0(µ) =
(1− p)µ

φ0

, φ0(µ) = (1− p)µ+ p(1− µ).

The receiver takes action a = 1 if and only if γs ≥ 1/2. Her expected utility from

learning is

UL(µ) = max{0, 2γ1(µ)− 1}φ1(µ) + max{0, 2γ0(µ)− 1}φ0(µ)− c.

If she does not learn, she takes action a = 1 if and only if µ ≥ 1/2, obtaining

expected utility

UNL(µ) = max{0, 2µ− 1}.

For sufficiently low cost c, there are two interim beliefs at which the receiver is

indifferent between learning and not: µ < 1/2 such that upon s = 1, the receiver

switches to action a = 1, but the expected marginal benefit is exactly c: UNL(µ|µ <

1/2) = UL(µ|µ < 1/2, γ1(µ) ≥ 1/2); and µ ≥ 1/2 such that upon s = 0, the receiver

switches to action a = 0, but the expected marginal benefit is exactly c: UNL(µ|µ ≥

1/2) = UL(µ|µ > 1/2, γ0(µ) < 1/2). The first equation is 0 =
(
2γ1(µ)− 1

)
φ1(µ)−c

and the second equation is 2µ− 1 = (2γ1(µ)− 1)φ1(µ)− c, yielding

µ = 1− p+ c, µ = p− c,

where p− c ≥ 1/2 must hold.

Hence, if c ≤ p − 1/2, there are two non-learning, [0, µ), [µ, 1], and one learning,

[µ, µ), regions. In contrast to the original model, a non-learning region need not
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Figure 8: v̂(µ) and the sender’s optimal strategy with p = 0.8. The sender targets
(a) learning (less information) and (b) no learning (more information).
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be closed, as the sender-preferred equilibrium assumption puts the belief µ to the

learning region. If c > p− 1/2, the receiver never learns for any µ.

Sender’s maximization problem

Suppose c ≤ p− 1/2. A seller’s conditional expected utility v̂(µ) is

v̂(µ) =


0 0 ≤ µ < µ

pµ+ (1− p)(1− µ) µ ≤ µ < µ

1 µ ≤ µ ≤ 1

.

A sender’s optimal strategy can be found by concavification V of v̂. Fig. 8 depicts

v̂(µ) and an optimal sender’s strategy with p = 0.8 when c→ 0 and c = 0.2.

Comparison with the original model

First, the key simplification step–the Never-Learning Lemma–does not hold. The

posterior γs can fall into a learning region. If the sender then ‘sent’ the receiver

to γs directly, the receiver would learn instead of acting right away, thus changing

the outcome of the game. Second, v̂(µ) is discontinuous at the indifference points
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Figure 9: Equilibrium expected utilities as a function of c with p = 0.8.
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of learning/not, i.e., at {µ, µ}. In the original model, such discontinuities do not

exist in the introductory example as the threshold beliefs {µ, µ} have a different

interpretation. They are points toward which the optimal amount of learning gra-

dually shrinks, but at which it is strictly optimal not to learn. The sender-preferred

assumption is not needed there, because the RI strategy is always unique. Third, the

sender can strictly prefer to induce a = 1 indirectly through the receiver’s learning

and provide her with just enough information so that she learns (supp(τ ∗) = {0, µ}

in Fig. 8 (a)). Under entropy-based cost, the receiver can vary the precision of her

information, but here it is fixed, which is taken advantage of. Fourth, the sender’s

expected equilibrium utility Ev∗(a, ω) is non-monotone in c: he strictly prefers low

to intermediate cost, see Fig. 9 (b). When the sender targets a = 1 indirectly

through the receiver’s learning, the required amount of information to induce lear-

ning increases with c. Fifth, the receiver strictly prefers intermediate to high and

low cost. Under low cost, the sender targets the receiver’s learning. He provides just

enough information so that the receiver is indifferent between learning and not; any

benefit is exactly offset by paying c. With sufficiently high cost, however, the sender

induces a = 1 directly without the receiver’s learning; the receiver obtains valuable

information without paying any cost. In contrast, under entropy-based cost, the re-

ceiver’s expected equilibrium utility is always the highest when her information cost

parameter λ = 0. As she can decide on the amount of her information, she always
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becomes fully informed when λ = 0, not leaving any room for sender’s manipulation.

Appendix C: Proofs

Proof of Lemma 1

Proof. Let τ be the sender’s strategy of value v. Suppose ∃µ′ ∈ supp(τ) and

µ′ 6= ∪aNLa. Then the receiver’s optimal information strategy at µ′, φ∗µ′ , sa-

tisfies: µ′ /∈ supp(φ∗µ′), µ
′ lies in the convex hull of supp(φ∗µ′) and supp(φ∗µ′) ⊆

∪aNLa (Lemma 2). Then there exists the sender’s strategy τ ′ where supp(τ ′) =

(supp(τ)) \ µ′)∪ supp(φ∗µ′), which does not change the distribution of the receiver’s

actions conditional on the state (since supp(φ∗µ′) ⊆ ∪aNLa). Hence, the value of τ ′

is also v. Formally,

τ ′(µ) =


τ(µ) µ /∈ {µ′} ∪ supp(φ∗µ′)

0 µ = µ′

τ(µ) + τ(µ′)φ∗µ′(µ) µ ∈ supp(φ∗µ′)

.

Proof of Lemma 2

Proof. Note that the functions used here are defined in Appendix A. Let φ∗µ be

the receiver’s optimal information strategy at µ and suppose that ∃γ′ ∈ supp(φ∗µ)

for which γ′ /∈ ∪aNLa. That is, there exists distribution φγ′ of posterior beliefs γ,
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Eφγ′ [γ] = γ′, such that

Eφγ′ [B(γ) + λH(γ)]− λH(γ′) > B(γ′),

Eφγ′ [B(γ) + λH(γ)] > B(γ′) + λH(γ′),

Eφγ′ [û(γ)] > û(γ′).

Consider a different receiver’s information strategy φ′, where

φ′(γ) =


φ∗µ(γ) γ /∈ {γ′} ∪ supp(φγ′)

0 γ = γ′

φ∗µ(γ) + φ∗µ(γ′)φγ′(γ) γ ∈ supp(φγ′)

.

But then φ′ gives the receiver strictly higher expected utility than φ∗µ, contradicting

the optimality of φ∗µ.

Proof of Lemma 3

Proof. For λ > 0, the receiver’s marginal cost of becoming fully informed is infinity

(property of Shannon entropy). Hence, for any λ > 0, the receiver never decides

to become fully informed, implying ∪aNLa 6= ∅ (if λ→ 0, the non-learning regions

are the generic interim beliefs at which the state is fully revealed). The rest of

the statement follows from the equation (14) of the solution to the receiver’s RI

problem.

Let us further state another Lemma that will be used throughout the following

proofs.

Lemma 7. Let V (µ) be concavification of v̂(µ) defined as the smallest concave

function that is everywhere weakly greater than v̂.

i) If µ ∈ supp(τ ∗), then V (µ) = v̂(µ).
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ii) The sender benefits from persuasion if and only if v̂(µ0) < V (µ0).

Lemma 7 is an analogy of Lemma 2 and Corollary 2 from KG, which is applicable

to our setting when v̂(µ) modified to our setting is considered.

Proof of Proposition 1

Proof. First, let us show that the set ∪aEP a is non-empty and finite. Lemma 3

shows ∪aNLa 6= ∅. Let a be an action for which NLa 6= ∅. By the Krein-Milman

Theorem and (9)—showing convexity of NLa—NLa is a closed convex hull of its

extreme points; EP a 6= ∅. As NLa is an intersection of the simplex ∆(Ω) and

a collection of half-spaces

{
µ ∈ RΩ :

∑
ω∈Ω µ(ω)

(
e
u(a′,ω)

λ

e
u(a,ω)
λ

)
≤ 1 ∀a′ 6= a

}
, the set

EP a is finite. As the action space A is finite, then ∪aEP a 6= ∅ and is also finite.

Second, let τ ∗ be the sender’s optimal strategy under which the receiver never learns.

Suppose ∃µ′ ∈ supp(τ ∗): µ′ ∈ NLa \ EP a. Then there exists a subset X ⊆ EP a

where µ′ lies in the convex hull of X. Hence, there exists another sender’s strategy

τ ′ where supp(τ ′) = (supp(τ ′) \ µ′) ∪X. If the chosen action at some belief of X is

different from σ∗(µ′), the action chosen at µ′, it can only lead to the sender’s higher

expected utility by the sender-preferred assumption.

Third, let τ ∗ be the sender’s optimal strategy and suppose |supp(τ ∗)| > |Ω|. Then

supp(τ ∗) supports the tangent hyperplane to the lower epigraph of the concavifica-

tion above prior. Such hyperplane is defined by any |Ω| different points it contains.

By the Carathéodory Theorem, there exists a subset C ⊂ |supp(τ ∗)| with |C| ≤ |Ω|

such that the prior belief µ0 lies in the convex hull of C. Hence, there exists a sen-

der’s strategy τ ′ with supp(τ ′) = C. As supp(τ ′) supports the tangent hyperplane

to the lower epigraph of the concavification above prior, τ ′ is thus also optimal.
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Proof of Proposition 2

Proof. Let A1 hold, A = Ω = {0, 1}, and suppose the sender benefits from persua-

sion. Let µ0, µ ∈ [0, 1] be the probability of ω = 1 at the prior and interim belief,

respectively. For any λ > 0, there are two non-learning regions with EP 0 = {0, µ},

EP 1 = {µ, 1} where 0 < µ ≤ µ < 1. Note that v̂(µ) is a piecewise-linear function,

with linear segments over [0, µ], [µ, µ], and [µ, 1]. Without the loss of generality, we

can consider the sender’s strategies that induce at most 2 different interim beliefs.

Part i)

The concavification V (µ) of v̂(µ) can have four forms:

i) v(µ) = V (µ) if µ ∈ [µ, 1] ∪ {0} and v(µ) < V (µ) otherwise,

ii) v(µ) = V (µ) if µ ∈ [0, µ] ∪ {1} and v(µ) < V (µ) otherwise,

iii) v(µ) = V (µ) if µ ∈ {0} ∪ {1} and v(µ) < V (µ) otherwise,

iv) v(µ) = V (µ) if µ ∈ [0, 1].

Note that the in iv), the sender does not benefit from persuasion for any prior

µ0 ∈ [0, 1]. Suppose, contrary to the proposition, that there exists a sender’s optimal

strategy τ ∗ with µ̃ ∈ supp(τ ∗) and µ̃ ∈ (µ, µ)—the receiver learns at µ̃. Then v̂(µ̃) =

V (µ̃) (Lemma 7). Since v̂(µ) is linear over [µ, µ], this implies that v̂(µ) = V (µ) for

all µ ∈ [µ, µ]. But then, only case iv) can happen. In particular, v̂(µ0) = V (µ0),

which contradicts with the sender benefitting from persuasion.

Part ii)

Let us prove the only if part. From part i) the receiver never learns in an equilibrium.

Let A1 hold and let τ ∗ be an optimal sender’s strategy. From Prop. 4, the shape

of v̂(µ) and the fact that the sender benefits from persuasion, we have supp(τ ∗) =

{µl, µr} ∈ {{0, µ}, {µ, 1}, {0, 1}}. Note that each pair is a point on the frontier of

NL0 and NL1. Suppose, contrary to the proposition, there are two different optimal

sender’s strategies. Then there is a non-learning region of one of the actions such
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that one strategy induces belief on one frontier and the other strategy induces belief

on the other frontier of that non-learning region. But then a new strategy that would

instead, ceteris paribus, induce a convex combination of these two beliefs would also

be optimal (since the convex combination still leads to the same action). However,

such a new belief lies inside the non-learning region, which contradicts Prop. 4.

Let us prove the if part. Suppose there is a unique equilibrium, let τ ∗ be the optimal

sender’s strategy, but, contrary to the proposition, A1 does not hold. Without the

loss of generality, let a = 0 be the action that does not satisfy A1. That is, ∀µ ∈ [0, 1]:

v̂(µ) ≤ (1 − µ)v(0, 0) + µv(0, 1) and ∃µ ∈ [µ, 1]: v̂(µ) = (1 − µ)v(0, 0) + µv(0, 1).

Then it is either v̂(µ) = (1− µ)v(0, 0) + µv(0, 1), v̂(1) = v(0, 1), or both. Since the

equilibrium is unique and the sender benefits from persuasion, it must be supp(τ ∗) =

{µl, µr} ∈ {{0, µ}, {µ, 1}, {0, 1}} (from Prop. 1).

Suppose v̂(µ) = (1 − µ)v(0, 0) + µv(0, 1). Then v̂(µ) is linear over the whole [0, µ]

and supp(τ ∗) 6= {0, µ} (since then the sender would not benefit from persuasion

from Lemma 7). Furthermore, as v̂(1) ≤ v(0, 1), then supp(τ ∗) /∈ {{µ, 1}, {0, 1}},

because under such strategies he cannot benefit from persuasion.

Suppose v̂(µ) < (1 − µ)v(0, 0) + µv(0, 1) and v̂(1) = v(0, 1). Then the values v̂(0),

v̂(µ), v̂(1) lie on the same line, which is thus the concavification V . Therefore,

v̂(0) = V (0), v̂(µ) = V (µ), v̂(1) = V (1) and v̂(µ) < V (µ). Hence, supp(τ ∗) 6= {0, µ}

from Lemma 7. But then supp(τ ∗) = {µ, 1} if and only if supp(τ ∗) = {0, 1},

contradicting the uniqueness of an equilibrium.

Proof of Proposition 3

Proof. We can follow proof of Proposition 4 in KG applied to our setting.

37



Proof of Proposition 4

Proof. Let A1 hold and suppose the sender benefits from persuasion. Proposition

5 of KG, applied to our setting, implies that for any optimal sender’s strategy τ ∗ we

have supp(τ ∗)∩∪a∈Aint(NLa) = ∅, where int(NLa) denotes the interior of NLa.

Proof of Proposition 5

Proof. Focusing on the sender’s strategies under which the receiver never learns is

sufficient (Lemma 1). We show that the non-learning regions do not shrink as λ

increases. As the sender can choose from the same (or possibly even bigger) set of

strategies, he never becomes strictly worse off as λ increases.

Given µ, let s be a particular receiver’s strategy at µ, EV (s) be a gross expected

receiver’s utility under s, and I(s;ω|µ) be mutual information based on Shannon

entropy associated with s. Let λ ≥ 0. Suppose the receiver does not learn at µ.

Let sNL be the receiver’s optimal non-learning strategy at µ. Let sL be an arbitrary

strategy with strictly positive learning at µ. We have

EV (sNL)− λI(sNL;ω|µ) ≥ EV (sL)− λI(sL;ω|µ).

Let λ′ > λ. Then λI(sNL;ω|µ) = λ′I(sNL;ω|µ) = 0 (no-learning costs zero)

and λI(sL;ω|µ) < λ′I(sL;ω|µ). Hence, EV (sNL) − λ′I(sNL;ω|µ) > EV (sL) −

λ′I(sL;ω|µ), showing that no-learning strategy remains optimal at µ.

Proof of Proposition 6

Proof. Let A1 hold, A = Ω = {0, 1}, and suppose the sender benefits from per-

suasion ∀λ > 0. Let µ0, µ ∈ [0, 1] be the probability of ω = 1 at the prior

and interim belief, respectively. For λ > 0, there are two non-learning regions

with EP 0 = {0, µ(λ)}, EP 1 = {µ(λ), 1} where 0 < µ(λ) ≤ µ(λ) < 1. For each
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λ > 0 there is a unique sender’s optimal strategy τ ∗λ , where supp(τ ∗λ) = {µl, µr} ∈

{{0, µ(λ)}, {µ(λ), 1}, {0, 1}} (Prop.’s 1 and 2). The receiver never learns under τ ∗λ .

1. If supp(τ ∗λ) = {0, 1}, the receiver obtains complete information. If there is any

change in the sender’s strategy as a result of an increase in λ, the receiver can

only be worse off.

2. Since the non-learning regions do not shrink as λ increases (proof of Prop.

5), we have
∂µ(λ)

∂λ
≥ 0 and ∂µ(λ)

∂λ
≤ 0. Therefore, the sender’s strategies in-

ducing either always {0, µ(λ)} or always {µ(λ), 1} are (weakly) Blackwell less

informative as λ increases. Without the loss of generality, assume supp(τ ∗λ1) =

{0, µ(λ1)}. Consider any λ2 > λ1. We show that inducing {0, µ(λ2)} remains

optimal when the receiver’s marginal cost of information is λ2. Let v̂λi , Vλi

denote v̂ and its concavification V , respectively, when the marginal cost of

information is λi. We have 0 < µ(λ1) ≤ µ(λ2) ≤ µ(λ2) ≤ µ(λ1) < 1. From

Lemma 7 and the uniqueness of the sender’s strategy, it must be the case that

the line connecting v̂λ1(0) and v̂λ1(µ(λ1)) is strictly above the line connecting

v̂λ1(µ(λ1)) and v̂λ1(µ(λ1)). Based on the shape of v̂ in this setting and the

fact that 0 < µ(λ2) ≤ µ(λ2), this then implies that the line connecting v̂λ1(0)

and v̂λ2(µ(λ2)) will also be strictly above the line connecting v̂λ2(µ(λ2)) and

v̂λ2(µ(λ2)). Hence v̂λ2(µ(λ2)) 6= Vλ2(µ(λ2)). A similar logic applies to showing

that inducing {0, 1} is not optimal either.
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Abstrakt

V této práci rozšǐrujeme model Bayesovského přesvědčováńı o možnost, že př́ıjemce

si může za určitou cenu nav́ıc vyhledat dodatečné informace z vlastńıch zdroj̊u, což

je modelováno jako v racionálńı nepozornosti. Dı́ky tomu, že využ́ıváme společných

rys̊u, které mezi sebou maj́ı modely Bayesovkého přesvědčováńı a racionálni ne-

pozornosti, jsme schopni poskytnout řešitelný model, jež lze použ́ıt jako základńı

stavebńı kámen pro aplikované problémy. Na základě charakterizace optimálńı stra-

tegie př́ıjemce nab́ıźıme alternativńı algoritmus pro řešeńı daného modelu, který je

charakterizován séríı lineárńıch podmı́nek. Tento nový algoritmus je aplikovatelný

na standardńı model Bayesovského přesvědčováńı a v řadě př́ıpad̊u zjednodušuje,

někdy až dramaticky, hledáńı jeho řešeńı. Dále ukazujeme, že př́ıjemce nutně ne-

muśı mı́t prospěch z možnosti vyhledat své vlastńı nákladné informace, a může tak

upřednostňovat závazek k nečinnosti, co se sb́ıráńı vlastńıch informaćı týče.
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